
rmc FILE COP.

co

(0

(N

0

AN ANALYSIS OF SCHEDULE DETERMINATION
IN SOFTWARE PROGRAM DEVELOPMENT

AND SOFTWARE DEVELOPMENT
ESTIMATION MODELS

THESIS

Crystal D. Blalock, B.S.

Captain, USAF

AFIT/GCA/LSY/88S-2

2

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio 0 3

SA 83 12 20
'3

AFIT/GCA/LSY/88S-2

AN ANALYSIS OF SCHEDULE DETERMINATION
IN SOFTWARE PROGRAM DEVELOPMENT

AND SOFTWARE DEVELOPMENT
ESTIMATION MODELS

THESIS

Crystal D. Blalock, B.S.
Captain, USAF

AFIT/GCA/LSY/88S-2

DTIC

r AJ

Approved for public release; distribution unlimited

The contents of the document are technically accurate, and no
sensitive items, detrimental ideas, or deleterious information is
contained therein. Furthermore, the views expressed in the
document are those of the author and do not necessarily reflect
the views of the School of Systems and Logistics, the Air
University, the United States Air Force, or the Department of
Defense.

t-e~of n For

r~:C T'.B

il,,nnc,nced C.... t if icaticn

MQUA LITY

'.'PCTED

,ailability Codes

Mist Special

AFIT/GCA/LSY/88S-2

Al ANALYSIS OF SCHEDULE DETERMINATION

IN SOFVAR3 PROGRAM DEVELOPMENT AND

SOFTVARE DZVZLOPZNUT ESTIHATION MODELS

THESIS

Presented to the Faculty of the School of Systems and Logistics

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Cost Analysis

Crystal D. Blalock, B.8.

Captain, USAF

September 1988

Approved for public release; distribution unlimited

Acknowledgements

Analyzing schedule In software development programs was

a challenging endeavor. It required the inputs and

assistance of key individuals throughout the field to make

this research effort a success. I would like to acknowledge

those Individuals.

In order to determine the variables that contribute most

to schedule In software development program, interviews of

program managers/engineers and other experts In the field had

to be conducted. But, before those individuals could be

Interviewed, they had to be identified. I would like to

thank Captain Joe Dean, Hr. Brad Donald, Hr. Dave Hansen, and

Hr. Tom Bernard for supplying these names to me. I am also

sincerely grateful to all the people I interviewed. I

appreciate the time they took from their busy schedules to

review my questionnaire and then talk to me personnally.

To successfully analyze the software estimation models I

chose for this thesis, I first had to have access to them. I

am thankful to Professor Daniel V. Ferens for allowing me to

use his copies of the models he has access to for academic

purposes. I am also grateful to Aeronautical Systems

Division for allowing me access to the PRIC-S T T model and to

Hr. Jim Otte for providing me assistance in operating this

model. Second, I needed data to input Into these models In

order to make a comparison. I am once again thankful to

Captain Joe Dean for providing me with this data.

II

Finally, I would like to sincerely thank my friend,

Captain Mark Pohlmler for all the assistance he has given me

while I worked on this research effort. He has been a source

of knowledge, motivation, inspiration, comfort and friendship

that I shall never forget.

iii

YTademark kAcknowldaemints

PRICB-S is a trademark of RCA, Incorporated, a subsidiary of
General Electric, Incorporated.

SLIM Is a trademark of Quantitative Software Manaqement,
Incorporated.

SoftCost-R Is a trademark of Relfer Consultants,
Incorporated.

SPOR/20 Is a trademark of Software Productivity Research,
Incorporated.

System-3 is a trademark of Computer Economics Incorporated.

iv

Table of Content.

Page

Acknowledgements ii

Trademark Acknowledgements Iv

List of Figures viii

List of Tables . ix

List of Equations . . . o x

Abstract . . .o . .oo xi

Io INTRODUCTION 1
General Issue : 1
Definitions . o . . o . o o o . 2

Computer Software Component (CSC) 2
Computer Software Configuration Item

(CSCI) 3

Cost Model 3
milestone 0 . . . 0 0 3
Schedule o 3
Schedule Ris . o 3
Software Development Project/Program o 4
Virtual Machine 4

Specific Problem o o 4
Justification 5
Assumptions 5
Research ObJectives. 6
Investigative Questions 7
Scope and Limitations 7

1I. Literature Review 9
softare Develont. 9
Determinants of Schedule Risk 11
DOD Standard 2167 13
Software Development Estimation*Models ; 16

The Constructive Cost Model (COCOMO) . . 17
PRIC -B * * * . . . 20
SLIMe & 24

SoftCost-R 26
SPQR/20*. 28
System-3 31

III. METHODOLOGY 34
Introduction 34
Question One 34
Question Two 0 . 34

v

Page

Question Three 36
Question Your .* .* . *.. 38
Question Five 38

IV. Findings 39
Introduction . 39
Question One 39

Introduction 39
Software Development Phases 40
Lines of code. 42
Requirements Definition 44
Complexity 48
Work Breakdown Structure (188) 49
Amount of Prior Planning Performed . . . 52
Software Development Standards 53
Use of Management Principles 54
Software Programaer Ability 56
Data Base Requirements 58
Allowance for Testing 58
Use of software Development Tools 59
Identification of Resource Requirements . 60
Other Factors 61
Conclusion 62

Question Two 62
Review of Literature 63
Discussion of Interview Results .; . . 67

Question Three 75
Software Development Schedule Theory . 75
Review of Models Selected for Analysis 77
Description of the Data 77
Analysis of Results by Model 79

COCOMO . 0 79
PRICB-8 83
softCost-R 84
SPQR/20 0 . 84
System-3 85

Summry of Results 86
Question Four 87
Question Five 91

V. Conclusions and Recomendations 93
Conclusions 93
Recommendations 95

Appendix A: Interview Questionnaire For DOD Program
Managers/gngineers 97

Appendix B: Interview Questionnaire For Software
Development Ixperts (DOD and Comercial) 104

vi

Page

Appendix C: Mitre Project Data 105

Appendix D: Intermediate COCOHO Cost Driver Ratings
And Effort Multipliers For Project #24 123

Appendix 3: PRICE-8 (MODE 2) Input Values 124

Appendix F: PRICE-S (MODS 2) Estimation Sumeary 128

Appendix G: SoftCost-R Input Values 129

Appendix H: SoftCost-R Resources Estimate 131

Appendix I: SPQR/20 Input Values 132

Appendix J: SPQR/20 Sumnary Estimate 134

Appendix K: System-3 Input Values 135

Appendix L: System-3 Sum ary Report 137

Appendix M: COCOMO Software Development Effort
B ultipliers . 139

Bibliography 139

VITA 145

vii

List of Fianres

Figure Page

1. Software Development Project Feedback Loop 55

it. Rayleigh-tMorden Curve 76

Vill

Lint of Tables

Table Page

1. COCOMO Factors By Caterory 19

2. PRICE-8 Cost Elements and Associated
Development Phases 21

3. Factors Consistently Identified By Rxperts
as Affecting Schedule 62

4. Model Input Parameters Identified As Having
The Highest Correlation With Schedule 74

S. Estimated Project Duration by Model (in
onths) . 87

ix

List of Rguations

Equation Page

1. Intermediate COCOMO Organic Equation
For Effort . . * 19

2. Intermediate COCOlO Semi-Detached Equation
For Effort 19

3. Intermediate COCOMO Embedded Equation
For Effort 19

4. Norden Equation For Cycles Of A Project 76

5. Basic COCOMO Embedded Equation For Effort 79

6. Intermediate COCOMO Adjusted Estimating Equation . . 80

7. Basic COCOMO Embedded Equation For Schedule a . . . 80

8. ESD Recalibrated Basic COCOMO Embedded Equation
For Effort 80

9. ESD Recalibrated Basic COCOMO Embedded Equation
For Schedule .s........*.. , .9.9.80

10. ESD Recalibrated Nominal Intermediate COCOHO
Equation For Effort 80

11. ESD Recalibrated Adjusted Intermediate COCOMO
Equation For Schedule 80

12. PRICE-S Model Equation For Schedule 89

x

K AFIT/GCA/LSY/$8S-2

Accurate schedule estimation in software development

programs is important because delays in the schedule of a

software development program can cause delays in the entire

schedule of a weapon system.

In order to more accurately predict the schedule of a

software development program, estimators need to know which

development factors affect schedule. This thesis reports

twelve factors Identified as heavily influencing software

development program schedules. These factors were determined

through extensive reviews of literature written by software

development experts and from interviews with DOD Program

Mnagers/Rngineers and commercial experts who have had

experience with software development program.

Also, there are many comercial software development

estimation models on the market today. Five of these models

were analyzed for their accuracy In predicting software

development program. The models analyzed were COCONO,

PRICZ-8, SOFTCOST-R, SPQR/20, and sYSTEN-3. Inputs to these

models were also analyzed for their correlation to schedule

xi

AN ANALYSIS OF SCHEDULE DETERMINATION

IN SOFTWARE DEVELOPMENT PROGRAMS AND

SOFTWARE DEVBLOPMENT ESTIMATION MODELS

I. INTRODUCTION

General Issue

In today's Defense world, the use of the computer Is no

longer a new phenomenon. The widespread use of computers in

military weapon systems has made software development cost an

important part of a weapon system's cost estimate. The

ability to determine the cost of the software used In these

computers, however, Is still in a growth state. Volume I of

the Doty Associates, Inc. Software Cont Estimation Study

expands this belief.

Since the advent of modern computers, It has been
common for the cost and time required to develop
software, particularly for large programs, to
exceed initial estimates. In addition, the
increased sophistication of software applications
over the past ten years has made these erroneous
estimates more significant in terms of absolute
costs (18:11.

Although this study was written In 1977, these statements

still hold true today. Barry Boehm, developer of the COCONO

software development program estimation model, continues on

the need for software cost estimation.

There is no good way to perform a software cost-
benefit analysis, breakeven analysis, or make-or-

1

buy analysis without some reasonably accurate
method of estimating software costs, and their
sensitivity to various product, project and
environmental factors 15:30].

The schedule of the software development project is one

major contributor to the project's cost. Schedule risk, an

aspect of scheduling, has a large impact on how much

additional cost may be incurred. Alan Wingrove, in his

recent article, "The Problems of Managing Software Projects,"

suggests schedule is even more important in larger sized

software development program when he States,

From the evidence it would appear that any project
which involves a significant software content runs
a high risk of being completed late and costing
significantly more than budgeted [46:31.

Because of today's more advanced and complex software

that Is continuously being developdd for national defense,

schedule and schedule risk is an area that must be frequently

examined in order to develop new and more precise methods for

its estimation. When schedule Is accurately estimated, cost

estimates will improve with accuracy and overruns will be

curtailed.

Definitions

Before continuing the introduction, some key term that

will be used throughout this research effort will be defined.

Comuter Software Comnonent (CSC). A CSC Is a lower

sub-division of Computer Software Configuration Item (CSCIs)

or CSCIs that have been partitioned into smaller units

(21:3).

2

Computer Software Configuration Item (CSCI). CSCIs are

computer programs, or groups of computer programs satisfying

comon functions. They are managed as separate entities

(21:3); each CSCI follows its own development cycle. CSCIs

will be discussed later in a review of DOD-Standard (DOD-Std)

2167.

CsMoe. The AFSC Cost EstimatIng Handbook defines

cost model as "an estimating tool consisting of one or more

cost estimating relationships, estimating methodologies, or

estimating techniques used to predict the cost of a sys-

tem...' (41:8-2).

MiisUne. John Boddie, author of Crunch Mode:

Buildina Effective Systems on a Tight Schedule. states, "A

milestone event is an event that must occur if the project is

to be completed. The combination of the event and the date It

should occur comprise a milestone (3:58).

Schedule. A "timed plan" for completing a work package

(12:146). In his article, "Managing Software Development

Projects for Maximum Productivity," Norman R. Howes states:

The purpose of scheduling is not only to predict
when a Job can be completed given the sequence of
work and the resources available, but also to
establish start and end dates for each work package
(23:29).

Schedule Risk. Schedule risk is the probability of a

software development program not being completed within the

time frame for which it has been budgeted (41:A-65).

3

Software Developm nt Prolect/Program. A software

development program or project is the process of engineering

software to be used In conjunction with some type of

hardware. Paul Rook continues this definition in the article,

"Controlling Software Projects."

The clear emphasis in the modern approach to
software engineering is to focus attention on the
overall development process. This Is the aim of
structured software development, which breaks down
the project into a series of distinct phases, each
with well defined goals, the achievement of which
can be verified, ensuring a sound foundation for
the succeeding phase [37:71.

And finally, as another example, Norden defines a

development project as "a finite sequence of purposeful,

temporally ordered activities, operating on a homogeneous set

of problem elements, to meet a specified set of objectives

* ." (27:74).

Virtual Haehine. Boehm states that "for a given

software product, virtual machine is the complex of hardware,

and software It (the computer] calls upon to accomplish its

task (6:510).

Maecific Problem

Because delays in schedule can have a substantial

adverse affect on costs, program managers need to know how

and to what extent schedule risk should be included In

software development cost estimates.

4

Justification

The Cost Analysis Branch of the Aeronautical Systems

Division (ASD/ACC) of Air Force Systems Comand at Wright-

Patterson Air Force Base has requested that AFIT thesis

research be done in the area of software development cost

estimating (43). Schedule risk plays an important part in

accurately estimating the cost of a software development

program. Determining how and to what extent schedule risk

should be included In software development cost estimates

will increase the accuracy of the estimates and allow weapon

system program managers to better budget their resources.

AssumDtins

The following assumptions are made for this research:

1) The manner In which schedule risk is incorporated

Into current software development cost models can be inferred

from current literature and software development cost model

documentation.

2) Historical data on estimated versus actual costs of

software development program can be obtained from Electronic

System Division (ESD), Cost Analysis Branch (ACCR).

3) Cases of software development programs at ESD where

delays in schedule were reported are available for review.

Cases of software development program which were on or ahead

of schedule will also be available for review.

4) Software development cost analysts, determined to be

experts in the field, interviewed throughout the Air Force

5

and In private industry, have sufficient knowledge to answer

questions regarding the determination of schedule risk In

software development cost estimates.

Research Oblectives

In order to thoroughly Investigate and derive a

significant conclusion to the research problem, the following

research objectives were achieved:

1) Gained sufficient knowledge In the subject of

software development programs to understand the estimation

process. Particularly, gain knowledge In the area of schedule

and schedule risk in software development program to be able

to determine improved methods for determining it;

2) Developed adequate expertise in using the designated

cost models to be analyzed so that the extent to which the

models incorporate schedule risk can be assessed;

3) Determined the relative importance of schedule risk

with respect to other cost drivers in software development

cost models;

4) Determined to what extent schedule risk has been

previously, and currently should be incorporated Into cost

models based on its determined importance.

5) Developed criteria, based on this research, that

program managers can use when determining how schedule risk

can more accurately be incorporated into a cost model.

6

Investigative Ouestions

The following investigative questions are raised to

support the research objectives:

1) What are the factors affecting a software
development program schedule?

2) What Is the Importance of schedule risk to a
software development program?

a) To what degree do program managers consider
schedule and schedule risk?

3) What methods for determining schedule risk are
currently used in software development cost models
and have they been tested and/or validated?

a) Which of these methods appear to be
most valid?

.4) In cost models, what is the significance
of schedule risk?

a) Is schedule risk an independent variable or
does its significance depend on the value
of other independent variables in the cost
,models such as size of the program, number
of programmers required, or level of
software sophistication required?

5) Can any of these methods be combined or
incorporated Into a new and more accurate method
for accounting for schedule risk In cost models?

Scope and Limitations

The following limitations will define the scope of this

research effort:

1) only four or five current software development cost

models were chosen for analysis.

2) The selection of the cost models depended on the

availability of thorough documentation for each model, the

availability of the model itself and the ability to access

these models to run case study data.

7

3) only one project from the data base was run for

analysis un each of the models.

4) Interviews with program managers who have been

involved in software development programs were arranged

through points of contact at various product divisions

throughout Air Force System Command and other USAF major

commands.

S

II. Literature Review

The process of software development is a very popular

topic among a broad base of people ranging from specialists

In computer programming, who are interested in all the

intricacies of programing new software, to general program

managers who are only interested in the end result.

Consequently, there has been a great deal of literature

written on software development ranging from very technical

to very general. However, only a small portion of this

literature specifically addresses schedule and schedule risk

as a component in software development cost estimating.

The purpose of this chapter will be to address current

views on software development cost estimating and, specifi-

cally, what are considered to be some of the determinants of

schedule. A review of the current Department of Defense

Standard directing the development of software will be given,

and cost models that will be used in this research effort

will be discussed.

Software Develo ment

The increase in size of many current software

development projects and the common occurrence of overrunning

schedule with its associated increased costs has caused many

major corporations and the DOD to examine ways of improving

their software development techniques. A representative from

9

TRW, Inc. gives three reasons why examining software

development more closely is important.

1) Our customers have shown a growing
unwillingness to accept cost and schedule overruns
unless the penalties were increasingly borne by the
software developer.

2) Partly as a consequence of 1), we have entered
into software development contracts where both
adherence to predicted costs and on-time delivery
were incentived. That means we made more money if
we could predict accurately the cost and the time
it would take to do the Job.

3) We found that we could improve our estimates
only by improving our understanding of exactly what
steps and processes were involved in software
development, and this understanding enabled us to
manage the effort better. The better management,
in turn, improved our estimates 147:156).

For these reasons, it In also important that personnel in the

DOD examine the processes that comprise software development

and understand what occurs at each phase.

As noted above, software development is a multi-faceted

development process. It is best managed and understood when

broken down into distinct phases. Norman R. Howes, author of

"Managing Software Development Projects for Maximum

Productivity," gives an interesting perspective on the

software development process. He theorizes that software

development management has two distinct parts: project

planning and project execution (23:27). He also says that

these two parts each contain several distinct sub-parts.

With respect to schedule the min part that should be

analyzed, according to Howes, is "project planning." Howes

lists five sub-parts to project planning: subdivision of

10

t m e .em m u n m n m - -

work, quantification, sequencing of work, budgeting, and

finally scheduling (23:27).

Normally, software development is divided into subsec-

tions for different phases of the development. An example of

division Is the Brown & Root Integrated Control System, which

Howes helped in creating, a development management system

that divides software development into a "series of

decompositions based on how the work will be performed"

(23:27). The resultant hierarchy is called a "work breakdown

structure" (WBS) (23:27). The concept is often used by other

software development teams to better control all aspects of

the project.

Jack Cooper explains basically the same idea for

software development schedules. He states that an effective

way to develop a schedule is to "approach the task the same

way you would approach the top-down design of a software

system" (14:24). He says that when developing the schedule,

start at the top of the project and "decompose it into its

first line major tasks" (14:24). Next, the task can be

further decomposed into more comprehensive sub-tasks until

"the level is reached where tasks cannot be sub-divided any

further" (14:24).

Determinants of Schedule Risk

Another area of interest to this research effort is the

determinants of schedule risk as perceived by experts. These

determinants are important to any software development

11

project and can vary widely depending on expert opinion and

the particular case to which the schedule risk applies.

Cooper in the article "Software Development Management

Planning" reiterates this point, "Another critical action to

be taken before proceeding . . . is to identify all of the

potential risk areas" (14:23). He goes on to state, "Many of

the high risk areas should be included on the project's

critical path" (14:23). While all determinants are

important, this review will focus on specification,

experience, planning, and complexity.

One of the major determinants of schedule risk has to do

with specification. If the requirements for the software are

not properly specified and defined, accurate schedule

determination will be difficult. Walt Scacchi, in his

article "Managing Software Engineering Projects: A Social

Analysis," talks about specification; he states, "Problems

found In specifications may be due to oversights in their

preparation or conflicts between participants over how they

believe the system should function" (38:54).

Another factor that can determine schedule risk is

experience, specifically, experience that the software

developers have with the type of software being developed.

The Doty Associates, Inc. report highlights this area when

analyzing sizing of the program and experience of the

developer at the same time. If the developer determines size

estimates In man months and secondary resources based on

12

experience, then the chance for error will depend on the

similarity of his/her previous experience to the new

development (18:72). The sizing of the software development

program will in turn determine its schedule.

The level of planning involved is also a determinant of

schedule risk. Generally, the more planning that goes into a

software development project before it starts, the greater

the chances it will run on schedule. According to R.S. Hurst

in the article "SPMMS-Information Structures In Software

Management,"

Planning includes planning the project, planning
the product and planning the use of resources; it
includes choosing the processes to be applied
within the project and determining the nature of
the support the project will need. A plan has to
describe the relationships between the tasks, the
intermediate outputs and the responsibilities of
personnel [24:501.

One last major determinant of schedule risk discussed

here is complexity. The more complex or sophisticated the

software that is being developed, the higher the probability

there will be delays or deviations in schedule. In one study

of product-related factors on productivity, It was found that

a large percentage of complex code was associated with low

productivity (44:146). Low productivity is often associated

with schedule delay.

DOD Standard 2167

DOD Standard (DOD-STD) 2167, "Defense System Software

Development," is the Department of Defense (DOD) standard

13

which establishes "requirements to be applied during the

acquisition, development, and support of software systems

(16:1/2). DOD-STD 2167 is the result of a development

process started In 1979 to standardize acquisition,

development, and support standards and policies (11:1).

Prior to DOD-STD 2167, DOD-STD's 483, 490, 1521A, and 1679

provided the guidelines for software development (11:1).

Cheadle believes the new standard impacts software parametric

modeling "because it requires specific documentation to be

reviewed at specified design reviews (11:1).

One important aspect of DOD-STD 2167 Is that it breaks

the software development process into the following major

activities, which it says may overlap or be applied

Iteratively:

1) System Requirements Analysis/Design

2) Software Requirements Analysis

3) Preliminary Design

4) Detailed Design

5) Coding and Computer Software Unit Testing

6) CSC Integration and Testing

7) CSCI Testing

8) System Integration and Testing (16:9).

DOD-STD 2167 also calls for formal reviews and audits to

be conducted at specified points during these software

development activities. Between System Requirements Analysis

and System Design is the System Requirements Review (SRR);

14

between System Design and Software Requirements Analysis is

the System Design Review (SDR); between Software

Requirements Analysis and Preliminary Design is the Software

Specification Review (SSR); between Preliminary Design and

Detailed Design is the Preliminary Design Review (PDR);

between Detailed Design and Coding and CSU testing is the

Critical Design Review (CDR); between CSC Integration and

Testing and CSCI Testing Is the Test Readiness Review (TRR)

(16:10). After CSCI Testing, three more reviews occur before

Testing and Evaluation and finally Production and Deployment.

These reviews are Functional Configuration Audit (FCA),

Physical Configuration Audit (PCA), and Formal Qualification

Review (FOR) (16:30).

Cheadle believes the additional regimentation of the

review process and the introduction of the new Software

Specification Design Review (the SSR) was initiated "because

contractors and contracting agencies were still discussing

requirements at the Critical Design Review" (11:1). Cheadle

states, "If the contractor, user and customer are still

identifying requirements at the CDR then the project is In

danger of overrunning and missing the schedule" (11:1).

Bruce and Pederson state during the Preliminary Design

Phase, "requirements analysis tasks are performed to

establish a requirements baseline" (8:8). They go on to

state "the requirements are then analyzed and allocated to

functional software areas which results in a preliminary

15

design (8:8). This preliminary design will provide the

baseline for the Detailed Design phase (8:8).

Next, further analysis and design work on the

preliminary design baseline results in the detailed design,

which forms the baseline for Coding and CSCI Testing (8:8).

During this phase the actual coding and testing activities

occur (8:8).

This new structure seems to be an attempt by the DOD to

standardize the phases of the software development process.

However, often, many experts in software development have

different definitions for activities of a software

development project from those of DOD-Std 2167. Bruce and

Pederson state that software development proceeds through

three distinct phases: Preliminary Design, Detailed Design

and Implementation and Operation (8:8). They also note that

it Is often very difficult to determine the actual status of

any of these development activities (8:8). Bruce and

Pederson state, "Often five or six development steps are

completed and three fourths of the calendar time and budget

is expended before any proof of progress or quality Is shown

* . ." (8:8).

Software Develonment Istimation Models

This research will be conducted with the aid of

commercially and DOD-developed software development cost

models. There are many of these types of cost models

available for use today. The cost models to be used in this

16

analysis will be determined by the extent to which thorough

documentation is available on the model. The following

paragraphs describe cost models that are candidates for use

in this research effort.

The Constructive Cost Model (COCOMO). COCOMO is one of

the more popular software cost estimating models on the

market today. This is probably true because its developer,

Barry W. Boehm, provides extensive documentation as to how it

was developed and how it works. Users can make adjustments

to the model to fit their own scenarios.

Boehm emphasizes the primary reason he developed the

COCOMO model was to help managers understand "the cost

consequences of the decisions they will make in

commissioning, developing, and supporting a software product"

(4:13). Boehm describes the different COCOMO models.

COCOMO is actually a hierarchy of three
increasingly detailed models which range from a
single macro-estimation scaling model as a function
of product size to a micro-estimation model with a
three level work breakdown structure and a set of
phase-sensitive multipliers for each cost driver
attribute (4:13).

In this research effort, the Intermediate COCOMO model

(the second of the three models described above) was

analyzed for its techniques in incorporating schedule. The

Intermediate COCOMO model is an extension of the Basic COCOMO

model (described above as a single macro-estimation scaling

model). The Basic COCOMO model is good for quick, early

rough order of magnitude estimates of software costs, but its

17

accuracy is limited because of the lack of additional factors

used to compute the estimates (4:58). The Intermediate

COCOMO model has potential for greater accuracy and a higher

level of detail, making it more suitable for cost estimation

in the more detailed aspects of software product development

(4:58).

Boehm stated, "There are many candidate factors to

consider in developing a better model for estimating the cost

of a software project" (5:115). To narrow this large number

down to a manageable size Boehm subjected each factor to two

tests:

1) General Significance--The test for general

significance eliminates those factors significant only on a

small number of specialized occasions (5:115).

2) Independence--The test for independence eliminates

factors strongly correlated with product size and compresses

factors usually highly correlated on size projects Into a

single factor (5:115).

The-result of this narrowing of the number of factors is

the Intermediate COCOHO currently uses 16 different cost

drivers which are divided into four categories to estimate

cost (21:9). These categories are Product Attribute,

Computer Attributes, Personnel Attributes and Project

Attributes (5:116). The factors for each category are

listed in Table 1.

18

Table 1

COCOMO Pactors By Category (5:115-116)

Product Attributes

Software Reliability (RELY)
Data Base Size (DATA)
Product Complexity (CPLX)
Requirements Volatility (RVOL)

Comauter Attributes

Execution Time Constraint (TIMM)
Main Storage Constraint (STOR)
Virtual Machine Volatility (VIRT)
Computer Turnaround Time (TURN)

Personnel Attributes

Analyst Capability (ACAP)
Applications Experience (AEXP)
Programmer Capability (PCAP)
Virtual Machine Experience (VEXP)
Programing Language Experience (LEXP)

Proiect Attributes

Modern Programing Practices (MODP)
Use of Software Tools (TOOL)
Required Development Schedule (SCHED)

Note: Requirements Volatility was added in 1986 (21:9).

The Intermediate COCONO software development effort

first begins by generating nominal effort from scaling

equations (5:117). The equations for the various types of

software are as follows:

Organic MNI... - 3.2 (KDI)t- (1)
Semi-detached Mn.... - 3.0 (KDSI) -1 0 (2)
Embedded MM.d... - 2.8 (KDI)* 1' ° (3)

where,

MM is man-months,

KDSI is thousands of deliverable source instructions.

19

These nominal estimates are then adjusted using ratings with

respect to the other 16 cost driver attributes described

above (5:117). The COCOO model also uses the Rayleigh

distribution to give approximations to the labor

distributions for the software development effort (5:68).

The output of the Intermediate COCOHO model is the level

of effort in person-months (5:115). A COCONO person-month

consists of 152 hours of working time *which was found to be

consistent with practical experience with the average monthly

time off due to holidays, vacations and sick leave" (5:59).

COCONO estimates in person-months instead of dollars because

of *the large variations between organizations in what is

included in labor costs . . .' (5:59).

EB.X.-L. PRICE-S M" is a commercially available (GE,

Inc.) macro-cost estimation model developed primarily for

embedded system applications. The model consists of

parametric methods to estimate costs and manpower for

software development (41:8-21). The ARC Cost bstimating

Handbok. further describes PRICS-8.

PRICE-S estimates probable cost on the basis of
project scope, program composition, processor
loading, and previous organizational performance.
Operational and testing requirements are
incorporated, as well as technology, growth and
Inflation, to generate estimates of cost . . .
(41:8-21).

In addition to cost, PRICE-S will derive schedules of

work. To do this, the model examines schedule constraints

that have been imposed within the model (34:1-2). Costs are

20

also adjusted to account for acceleration, stretch-out, and

phase transition inefficiencies (34:1-2).

The basis for PRICK-S is a comparison of new

requirements to analogous estimates in the past (34:1-2).

The model relies heavily on the experience and judgement of

managers using the model. PRICK-S incorporates this

experience Into variables which "describe the significant

technological and cost differences between Individual

projects and organizations (34:1-2).

PRICK-S outputs values for six cost categories in each

of the nine development phases as prescribed by DOD-STD 2167.

Table 2 displays the cost elements and the corresponding

development phases as described in the PRICK-8 manual (34:1-

1):

Table 2

PRICK-8 Cost Elements and Associated Development Phases

Cost Ilenent Develonment Phases

Design System Concept

Programing System/Software Requirements

Data Software Requirements

System Engineering/ Preliminary Design
Program Management Detail Design

Quality Assurance CSC Code/Unit Test

Configuration Management CSCI Test
System Test and Evaluation
Operational Test a Evaluation

21

The PRICE-8 model calculates cost in term of effort

(either person months or person hours) and a typical schedule

for the development program (34:1-1). PRICR-S will also

perform sensitivity analyses and summarize effects of

uncertainties (34:1-3).

PRICe-S inputs are grouped into nine categories as

follows:

1) Project Nagnitude--the number of source lines of

code (SLOC) to be produced.

2) Project Application--called Application, tells what

type of project.

3) Level of New Design and Code--amounts are specified

by the user.

4) Productivity--entails organizational capabilities,

experience and individual talents of the activity that will

accomplish the work.

5) Utilization--effort required to fit a software

program into a processor.

6) Customer Specifications and Reliability

Requirements--called Platform, summarizes operational

requirements. Also used to describe the transportability

requirements of a software project or how often a program

will be moved from one type of hardware to another.

7) Development Environment--called Complexity,

describes the effects of environmental factors that can

directly affect schedule time.

22

8) Technology Growth--based on the possibility of using

new, innovative development techniques that make the

development process more efficient. The key drivers here are

Productivity Factor, Application and Time.

9) System Integration--factor based on the necessity to

merge two or more related software products into one system.

PRICE-8 will develop time and schedule estimates for this

activity the same as it does for individual sub-systems

(34:1-11).

Regarding schedule, PRICE-S basically takes the

Judgement of experienced managers, engineers and estimators

to determine the impacts of the key cost drivers and

incorporates this knowledge Into the model (34:1-12). As

with any values based on expert Judgement, these values

would be subjective. However, the PRICE-S Manual states that

as much as possible, "actual recorded data is used to

formulate, test, and verify those assessment processes"

(34:1-12). The PRICE-8 Manual also acknowledges that data

does not always exist. The manual gives the example that "the

Impact of schedule variations on cost cannot be statistically

processed" (34:1-12). Since there was only one schedule for

programs In the past, it is not certain what would of

happened had that schedule been shorten or lengthened.

PRICE-S contends, however, that by knowing actual schedules

differ from the original planned schedule, cost impacts can

23

be modeled through studying the processes employed to manage

the schedule (34:1-12).

PRICZ-B uses the planned completion date for Software

Specification Review (SSR) and the Complexity factor to

generate an "internal reference schedule which is used to

calculate effort penalties (34:1-8).

When additional dates are entered (other than SSR),
new schedule dates are calculated to meet schedule
constraints and they are compared with the
Internally calculated reference schedule. This
comparison is used to calculate effort penalties
associated with phase acceleration, stretch-out,
and deviations from reference schedule (34:1-B8.

PRICE-S outputs cost in person-months or hours by the

software the life cycle phases listed in DOD-STD 2167. It

will also list schedule Information by review milestone (e.g.

SRR, SDR, etc.) (34:1-3).

AUX. The Putnam &oftware Lhfecycle kodel (SLIMrTM)

model is a software cost estimating system available from

Quantitative Software, Inc. (31:1-1). The model is based on

much of the theory developed by Mr. Lawrence Putnam (31:1-

1). SLIM is a fully interactive model and Is used to

generate projections of cost, time, personnel and machine

resources for developing computer software systems. It is

designed to handle a front-end estimating problem because it

requires certain estimate information from the start (31:2-

3).

Inputs for SLIM consist primarily of three SLOC

24

estimates: minimum, most likely, and maximum (21:14). The

following other inputs are also required:

1) Language

2) System Type

3) Description

4) Percentage of hardware memory used

5) Zxperience

6) Modern Practices (percentage use of new development

techniques)

7) Technology Factor (measure of difficulty)

8) Other Factors (including labor rates and economic

factors) (21:14).

The ARC Cost Estimmtinq Handbook describes SLIM

outputs.

The model provides the following outputs:

Identification of minimum cost, minimum time,
and all feasible solutions for a particular
software development project

3stimates of monthly man-loading

Optimum schedule for completion with associated
milestones

Risk profiles for schedule and effort

Identification of constraints on manpower ap-
plication and completion schedules (41:8-241.

As noted above, SLIM gives the minimum feasible time.

The user may then use this time schedule or he may
specify a longer time in which he can take
advantage of the trade-off law. This law Is in
essence a quantification of the Brooks' traie-off
law which states that one can greatly reduce the

25

cost and effort by taking a little more time

(31:1-11.

SLIM has a "design-to-cost" function which will

generate feasible time schedules given user-specified

constraints. SLIM will check user-specified cost and time

Inputs for feasibility and consistency with past data (31:1-

1).

SLIM also has an optional life cycle output that will

derive person-months, schedule, and person loading profiles

(21:15). William G. Cheadle stated that SLIM gives the

shortest schedule first and then "it Implies you can save

money by moving the time out to the optimum schedule* (10).

SLIM relies heavily on the Rayleigh-Norden Curve to

allocate resources during a project. The manufacturers of

the SLIM model contend that the approach used for a software

estimating problem depends on where one is In the software

life cycle (31:2-3). They further contend that the software

development program problem is a "pure estimating problem"

during the feasibility and function design phases (31:2-3).

It is pure estimating because the problem uses phenomenology

and past experience (data) to forecast a future event (31:2-

3). The developers of SLIM found that in this scenario a

model of observed behavior would be appropriate. They also

wanted a model that allowed the time to vary and had Input

parameters of development time, development effort and cost

(31:2-3). For these reasons they chose the Rayleigh-Norden

curve as the basis for their model (31:2-3).

26

so.fQ t-R.t. SoftCost-RT " is based on the model Dr.

Robert Tausworthe of the Jet Propulsion Laboratory developed

for NASA in 1981 (42:1-2). This model is also based on the

Rayleigh-Norden curve as well as Putnam theory developed in

SLIM (42:1-2).

SoftCost-R bases its estimates from inputs from the

factors size, management, staffing, complexity and

environment which is input at the beginning of the model

operation (42:1-2). From this information, SoftCost-R

computes a resource estimate in three steps:

1)- Size in Kilo Source Lines of Executable Code (KSLEC)

is computed.

2) Productivity as a function of technological and

environmental factors is computed.

3) Effort is computed by dividing total size by

productivity (42:1-2).

A standard WBS is also used to produce the task plan and

schedule to be used during initial project planning stages

(42:1-2). SoftCost-R also Incorporates a version of COCOMO

(COCOMO-R) in conjunction with SoftCost-R into the estimate

as a sanity and reasonableness check (42:1-3).

Outputs of SoftCost-R include an optimal time solution

in terms of time, cost and effort, and the statistical

confidence associated with the estimate (21:16). The

estimate of the resources required to complete the project is

27

defined In terms of the project factor data (listed above)

(42:3-22).

Regarding schedule, initial inputs into the SoftCost-R

model determine how SoftCost-R will determine schedule.

"Estimate Date" and "Project Start Date" are two inputs used

to compile Gantt and PZRT charts (42:1-3). Once the option

of either Gantt or PEUT chart Is selected, the model will

display effort and duration values originally Input at the

beginning of the program and then give the user the

opportunity to change these values if further knowledge Is

available (42:3-30). The Gantt and PERT charts are geared to

DOD-STD 2167. Another option, "what-if" has the capability

of displaying the effects of varying the schedule on a given

budget and-vice versa (42-3-24).

SEOR/20. The Software Productivity Quality, and

Reliability Estimator (SPQR/20T') was developed in 1986 by

Software Productivity Research, Inc. (39:1). SPOR/20 is

designed to be the quick estimator version of this model.

The number "20" represents the approximate number of input

variables required for the model's predictions (39:2).

Features of SPQR/20 include prediction of schedule by

phase, effort and costs by-activity, and staff sizes (39:1).

SPQR/20 will also predict complete development cycles from

planning through delivery, maintenance and enhancements for

five years after delivery, defect levels of software

projects, defect removal efficiencies of reviews and tests,

28

and the quality and reliability of the delivered software

(39:1).

SPQR/20 is designed to estimate mall of the direct labor

applied to software development and maintenance" (39:2). The

folloving are the major activities included in SPOR/20

estimates:

1) Planning

2) Requirements

3) Design

4) Coding

5) Integration

6) Testing

7) Documentation

8) Management

9) Central maintenance

10) Enhancements (39:3).

Another interesting aspect is SPOR/20 uses "function

pointsw to predict new source code size. The Function Point

technique was developed in 1979 by A.J. Albrecht of the IBM

Corporation (39:50).

Prior to the Function Point technique, software
productivity was always measured In term of lines
of code such as cost per source line or lines of
code per man month. Unfortunately, this metric
cannot safely be used for high-level languages,
since productivity rates In lines-of-code form
actually move backward as real productivity
improves 139:50).

In other words, there are some non-coding efforts that

will remain as fixed costs in person months despite the use

29

of a high-level language that reduces the amount of effort

for coding. The non-coding efforts are requirements, design,

documentation, and management. Lines of source code,

coding, and integration and test are the coding efforts

affected by the use of a high-level language (39:50). As in

any process where there are fixed costs Involved, when there

is a decline in the number of units produced (or in this case

a reduction in lines of code due to use of a high-level

language), the cost per unit (or source code) must increase.

The Function Point technique attempts to compensate for

the use of high-level languages by placing weights on

parameters that Albrecht determined to embody the

functionality of a program. These parameters are: number of

inputs, number of outputs, number of inquiries, number of

data files, number of interfaces (39:51). When the

parameters are weighted, they are also adjusted for

complexity and then su mod to derive a function point total

(39:51). This Function Point value Is input into the model

to estimate new source lines of code.

The advantages of using the Function Point technique as

noted by the developers of SPQR/20 are:

1) Function Points are independent of source code,
and do not penalized high-level languages; 2)
Function Points can be applied early in a software
life cycle, such as during the design phase; 3)
Function Points can be used to predict source code
size . . . 139:51).

The disadvantages of the Function Point technique lie in

the ambiguity that exists in defining the Function Point

30

parameters and the subjectiveness in the treatment of the

complexity adjustment (39:51).

Output of SPOR/20 covers six aspects of software

development programs. The first output is a risk and quality

estimate. Next, is a defect removal and reliability

estimate. Next, are the main development and maintenance

cost estimates. Finally, normalized management information

Is output.

9Xatena3. System-3M is a software cost estimating

model developed by Computer Economics, Inc. and is based on

work done by Dr. Randall Jensen (13:1-1). Dr. Jensen

explains the basic equation used in System-3 in the article

"An improved Macrolevel Software Development Resource

stLmation Model". Using a technology constant based on

technology input parameters and the Rayleigh-Norden curve,

System-3 computes the required software development effort in

staff-months and dollars (25:1).

JS-1 and JS-2 were the predecessors of System-3. JS-1

was introduced In 1982 after 3 years of development by CZI

(13:1-3). JS-2, introduced In 1984, was a refinement of JS-1

and had many advantages over 38-1. The J-1 produced

estimates for the Development Phase only but J8-2 also

produced estimates for the Requirements and System

Integration Phases (13:1-4). Bach parameter is further

estimated at its minimum, most likely and maximum (13:1-4).

CNI purports that these improvements allow users to estimate

31

even their uncertainty and further increase overall

estimation accuracy (13:1-4).

Another feature of 38-2 was the analysis It provides for

the cost and schedule required to "change, enhance and

modify" pre-existing software as opposed to re-building all

new (13:1-5).

Finally, 38-2 determined cost and schedule risk for
different bidding situations from fixed price bids
(where a higher probability of completion is
required) to simpler situations where "most likely"
estimates are needed. These features were firsts
in parametric estimating (13:1-51.

In the spring of 1986, CZI replaced 35-2 with a new,

further improved product, the System-3 (13:1-5). Some of the

key estimates of the new System-3 include: minimum

development time, minimum cost within a schedule, staffing

projections and plans, operational support costs, project

level cost suamaries, software to software estimation,

Incremental development estimation, system conversion

estimation and risk evaluation and reduction

(13:1-7). System-3 will also generate reports on schedule

risk, cost risk, dollars by month and differences from

baseline. Finally, Bystem-3 can generate graphs on such

areas as risk analysis and effort versus schedule tradeoffs

(13:1-7).

Inputs into System-3 fall under the following four basic

parameter categories: size or source lines of code (SLOC),

complexity, development capability, and environment (13:1-

11). Ninimum, most likely, and maximum values must be input

32

for each factor. 8ystem-3 also requires SLOC Inputs

(21:18).

Regarding schedule, System-3 contains a *view window"

which shows what effect a change in an input parameter viii

have on development cost and schedule (21:18).

Outputs of System-3 consist of suamry reports of effort

(in dollars and staff-months). Included in the reports are

development time, the computed technology constant, and the

effective size (21:18).

33

III. MWTHODOLOGY

Introduction

The purpose of this chapter is to describe the

methodology that will be used to arrive at answers or

conclusions for the Investigative Questions posed In Chapter

I. The Investigative Questions are designed to go from the

general to the specific.

Question One

What are the factors affecting a software development

program schedule?

This question will be answered in terms of the views

experts in the field of software development and software

engineering have toward schedule risk. An understanding of

these views regarding schedule risk will be obtained from

reading current literature in the form of books, periodicals,

and professional Journals on the subject. A particular

Journal, the Institute of Electronic and BlectZical Engineers

(IZ3E) Transactions on 9oftware znaineering, has numerous

articles written by experts in the area of software

development and is published monthly.

Question Two

What is the Importance of schedule risk to a software
development program?

a) To what degree do program managers consider
schedule risk when estimating the cost of a
software development program?

34

The first part of this question will also be determined

after a review of current literature written by experts in

the field.

The sub-part to this question will be determined after

interviewing DOD program managers and experts in private

industry who have been involved In software development

projects.

An interview will be used as opposed to a survey because

of the *depth and detail of the information that can be

secured" (20:160). Also the quality of the information

should be better than if obtained by a survey because the

interviewer "can note conditions of the interview, probe with

additional questions, and gather supplemental information

through observation" (20:160).

Costliness Is one disadvantage of interviews (20:161).

Costliness of interviews will not be a factor in this

research.effort because of the ease of reaching program

managers located on the same base (Wright-Patterson AFB).

Reaching program managers at ESD and other divisions of AFSC

will also not be costly because they will be interviewed via

Autovon.

When interviewing program managers at divisions other

than ABD located at Wright-Patterson over the telephone,

one possible limitation should be considered. The length of

the interviews may not be as long as those conducted at ASD

35

interviews. This was considered when evaluating the answers

given by Interviewees.

The number and identity of the Interviewees will be

determined by contacts from the various product divisions in

Air Force Systems Command. Preferably, the number to be

interviewed should be at least five program managers from

each Division (total of twenty program managers). This

number should be sufficient to cover the spectrum of views

program managers have regarding schedule risk in software

development programs without the answers becoming repetitive.

The questions ranged from the general to the specific

and will be open-ended type questions. Two questionnaires

were used. One was for DOD Program Managers and Engineers

and the other was for Software Development Experts (DOD and

Commercial). The exact list of questions was determined

after a review of literature was made. Once the questions

.were determined, they were reviewed by selected AFIT faculty

and colleagues for clarity and content. The interviewer

practiced asking the questions on colleagues before the.

actual interviews in order to become familiar with the

questions. The questions used in the Interviews are given in

Appendix A and B.

Question Three

What methods for determining schedule risk are currently
used In software development cost models and have they
been tested and/or validated?

a) Which of these methods appear to be most valid?

36

The answer to these investigative questions was

determined from an analysis of selected standard software

development cost models.

The selection of these cost models was based on the

availability of documentation on exactly how these models

were derived and availability of access to these models for

generating case estimates. Models considered for use were:

1) COnstructive Cost MOdel (COCOMO) (5:29),

2) PRICE-S (34:1-1),

3) Putnam-SLIM (31:1-1).

4) Systems-3 (13:1-1).

5) SoftCost-R (42:1-1).

6) SPQR-20 (39:1-1).

These-cost models were discussed previously in the Background

section of Chapter I and extensively in Chapter II.

The analysis of these cost models was sufficient to

determine how schedule risk was incorporated into these

models and what comprises schedule risk.

Historical cost data on software development programs

conducted in the DOD was run on the models and a comparative

analysis of the estimates given by each model was made.

Also, each estimate was compared to the actual cost of the

software development program that generated the data to

determine their accuracy.

37

Question Four

In cost models, what is the significance of
schedule risk?

a) Is schedule risk an independent variable or
does its significance depend on the value of
other independent variables in the cost models
such as size of the program, number of
programmers required, or level of software
sophistication required?

The answer to this Investigative Question was also

determined by reviewing the answers given by program managers

and experts in the field to the questionnaire and by

analyzing the selected cost models and reviewing the

available documentation on the regression techniques used to

derive these models.

Ouestion Five

Can any of these methods be combined or incorporated
into a new and more accurate method for accounting for
schedule risk in cost models?

The answer to this investigative question was derived

from a culmination of the answers to the investigative

questions above.

38

IV. Finding

Introduction

The purpose of this chapter is to discuss the findings

of this research and to discuss the answers to each of the

investigative questions posed in Chapter III. Each of the

investigative questions are addressed independently;

findings from this research relate to more than one

investigative question.

Ouestion One

What are the factors affecting a software development

program schedule?

Introduction. Frederick P. Brooks, Jr., author of The

Mythical Man-Month, states, "Most software projects have gone

awry for lack of calendar time than for all other causes

combined" (7:14). This regard for the effects that a

schedule can have on a software development program seems to

be universal among experts in the field. Therefore, it is

important that the factors affecting schedule should be

identified so that steps to control these factors can be

taken.

Chapter III stated that the answer to this question was

determined from analyzing the views of the leading experts in

the field of software development estimation. The experts'

views were found by researching articles and conference

papers found in common professional Journals and articles of

39

the software engineering field. Books and tutorials by noted

software development experts were researched as well. The

general conclusion is there are many factors that go into the

estimate of a software development program, and the answer to

this question can be as broad as the entire software

development program estimation process itself. This section

will begin with a discussion of the views of the experts

examined in this research. Next, their views will be

summarized, and finally conclusions will be drawn from the

summary.

Software Development Phases. Before discussing the

factors involved in the estimation of a software development

program, a review of the broader topic of the software

development life cycle is appropriate. As noted in Chapter

II, DOD-STD 2167 gives a very complete description of all the

phases of the software development life cycle. These phases

are, in order of earliest to latest: System Requirements

Analysis/Design, Software Requirements Analysis, Preliminary

Design, Detailed Design, Coding and Computer Software Unit

Testing, CSC Integration and Testing, CSCI Testing, and

System Integration and Testing (16:9).

Many experts break down factors that are used in

software development program estimation by life cycle phase

and others still will group the factors by the more general

headings of "product related factors" or "process related"

factors". J.D. Aron reports that the System Development

40

Corporation in the Programming Management Project spent years

analyzing data to identify factors affecting a program's

schedule (2:262). They concluded that key variables fall

into three groups: uniqueness, development environment, and

Job type and difficulty (2:262).

Another expert, Stephen P. Keider, identifies projects

as having five distinct phases: pre-initiation period,

initiation period, project duration, project termination, and

post-termination period (26:53). Keider identifies various

factors that occur in each phase that can affect schedule.

Still another expert, Alan J. Driscoll, describes the

software development process in three stages: analysis and

design, implementation, and verification (19:46). Finally,

William S. Donelson has yet another idea of what the phases

of the life cycle of a software development program should

be. He says the life cycle has the following nine phases:

problem definition, project organization, problem analysis,

system definition, system review and approval, detail design,

programming and testing, training and implementation, and

post-implementation review (17:74-75).

The point here is that although the standard for

software development programs with the DOD is DOD-STD 2167,

phases of this life cycle may have other slightly different

titles or certain phases may be combined into a larger

singular phase in private industry. This may be confusing to

some when trying to identify which phases of the life cycle

41

are associated with which factors that affect schedule.

Also, another problem that may arise from this is that

parties involved in a software development effort, because

they have different definitions for the phases of the

software development life cycle, may also have different

ideas for where critical events in the software development

life cycle should occur.

For this research effort, the life cycle phases

described in DOD-STD 2167 will be used. Also, if factors are

grouped in the discussion, they will be grouped by the

categories identified in the COCOMO estimation model. Those

categories are: size attributes, product attributes,

computer attributes, personnel attributes, and project

attributes (6:502). The following section discusses each

factor found by various experts to affect software

development program schedule.

Lines of code. As Putnam (who is well known for

developing the SLIM estimation model) states, "The earliest

efforts at software cost estimation arose from . . .

measuring average productivity rates for workers (30:1i). An

estimate of the total Job was made by compiling these rates.

The estimate was "usually in M&Chn* lnguage instructions"

also known as "lines Of code" (30:II). Machine language

instructions were used in early years because the factor was

related to memory capacity "which was a severe constraint

with early machines (30:ii). To determine the schedule of

42

the project, one merely took the project estimate in machine

language instructions and divided it by the budgeted manpower

(30:ii). Putnam adds that if this method produced a

schedule that was unacceptable to the user then "the manpower

level (and budget) was increased until the time to do the Job

met the contract delivery date" (30:i1).

The constraint of memory capacity is not a big problem

with the computers used today for software development

programs. Brooks has shown in his book, The Mythical Man-

Month, that adding manpower to a software project will not

decrease its schedule (especially if it is already over

schedule), but it will in fact increase schedule (7:19).

For these reasons, the number of lines of code a software

program is expected to contain does not appear to be a good

determinant by itself of what the software development

program schedule will be.

Putnam adds to this conclusion by saying that most

program managers do not have a good idea of how to estimate

how many lines of code a program will take anyway. He says

that estimating size "has largely been an intuitive process

in which most estimators attempt to guess the number of

modules and the number of statements per module" (32:1).

Putnam contends that this may be an effective way to

estimate small projects (less than 10 person years of

effort), but using this method on large projects has been

proven ineffective (32:1). Wendt and Evans agree with

43

Putnam's beliefs and say that the programers will not be

much help when estimating lines of code for a program

either.

First of all, most programmers do not know how to
estimate lines of code, and wonder what it has to
do vith anything, anyway. Programers do not want
to code the same application over and over again,
and before they get to the point where they could
tell you how mny lines of code a particular
application will take, they have requested to
change areas or even moved to another company
looking for a different software challenge
(45:10581.

Wendt and Evans also point out that, while counting

lines of code appears to not be a very efficient way of

estimating the size of a software program, there is no other

convenient measure available and subsequently this parameter

persists (45:1058).

As a counter argument to these beliefs that the number

of lines of code is not a good predictor of schedule, Roger

S. Pressman, author of Software Unaineerinag A

Practitioner's Aqnroach, states that a program of large size

could be a good predictor of a longer schedule because was

size increases, the interdependency among various elements of

the software grows rapidly" and subsequently it becomes

difficult to break the software down into more manageable

elements (29:81).

Reauirements Definition. Many experts in the field of

software development contend that this factor is one of the

most critical to a successful software development program

which is completed on time and at target cost. Yet, Phillip

44

Bruce and Sam M. Pederson, authors of The Software

Develo2ment Project: Planning and Management, say, "less

effort is often devoted to the initial requirements

definition, costing, and scheduling of a project than any

other part of the development cycle" (8:16). Wingrove

states that, "For anything other than a very small or simple

project, this perfect requirements document is an

impossibility" (46:4).

Requirements for the software program are specified by

the user in the System Requirements Analysis/Design phase of

the software development life cycle. At this time, the user

tells the developer, as precisely as he/she can, what the

software program must do. Many have found that undesirable

consequences such as delays in schedule result when the user

Is not closely involved in the requirements definition

process. Wolverton emphasizes this point when he states,

Thorough and continuous involvement of the customer
In the development process has been a reality of
several large software developments. Nothing takes
the place of competence and communication when it
comes to understanding the customer's or sponsor's
requirements (47:176).

Wolverton also points out that translating total system

requirements is a crucial first step In any software

development project (47:176).

Driscoll explains the effect a requirements definition

that is not thorough or complete can have on software

development schedule.

45

The effects of an adequate or inadequate
requirements analysis or definition ripple through
all phases of software development, including
design. Changes in requirements cause changes in
design and these in turn usually cause schedule
changes [19:471.

It is evident from this statement that it is not exactly the

poor requirements definition itself that will cause a

schedule to slip; instead, it is the inevitable changes that

will occur later in the software development life cycle

because of the poor definition that cause schedules to fall

behind. Edmund B. Daly states,

• . . historical analysis of completed GTE
Automatic Electric Laboratories' projects indicates
that over 50 percent of all development hours are
spent correcting bugs which result from faulty
design (15:294).

Putnam also believes that changes in the requirements

will, if not initially, eventually affect the schedule in

disproportionately large amounts (33:79). He gives an

example with the Army Computer Systems Command data where a

program had a small change in the requirements which

resulted In a major change in the schedule a year later

(33:79). Putnam states, "This shows that even a modest

perturbation of the system can have definite effects on large

systems, and that these effects may not be apparent until a

much later time" (33:79).

Bruce and Pederson emphasize that spending extra time

firming up the requirements before the Detailed Design Phase

can actually shorten the overall time and decrease the costs

required for the software development program (7:17). They

46

contend that the requirements definition Is "the basis for

the analysis of many other costing factors, including

difficulty, interfaces, size, tools, use of existing software

and data base complexity* (7:17). Vendt and Rvans agree

with this statement when they state, "Software managers are

forced to derive complete sizing of software systems based on

incomplete requirements and system specifications"

(45:1058).

At times, the requirements definition may be well

specified in the beginning, but there are still changes in

the requirements during the software development life cycle.

This occurrence brings to light another factor that is

related to requirements definition and will also affect

schedule, which is termed as the *stability of the

requirements." This factor Is not discussed as frequently in

literature probably because it Is so closely related to

requirements definition. No matter how detailed the

requirements are defined, if they are not stable, changes in

these requirements will result in schedule slippage. Many

experts contend that If the requirements are not stable and

there are major changes during the development cycle, the

schedule should be discarded and a new one estimated as If a

new software development program is being started.

From this discussion, it is surmised that adequately

defining the requirements of a software development program

is a factor that has a major affect on software development

47

schedule. Adequately defined requirements will allow the

estimator to more accurately predict the schedule of a

development program.

C. A general definition for complexity is the

degree of difficulty of a given kind of. software routine

(47:166). Complexity is typically associated with

productivity in generating lines of code. It is commonly

believed that the more complex a program, the more lines of

code it will take and, thus, productivity will be slower.

Putnam agrees that complexity has an effect on productivity.

After examining very large software programs which required

hundreds of lines of code to complete, he contended "it

became apparent that severe departures from constant

productivity rates were present and that the productivity

rate was some function of the system complexity" (30:ii).

Wolverton contends that determining the degree of

complexity (not defining the requirements, as others have

stated) of a software program is "the most crucial step in

the estimating process, for it establishes the cost of the

routine with all direct and indirect changes amortized

against it" (47:166). In other words, knowing how complex a

program will be will give a better clue as to how many lines

of code the program will take. Boehm states that, "Some

studies have lumped a wide variety of effects into the

'complexity' attribute and obtained relatively high

productivity ranges as a result . . ." (6:505). This shows

48

that what determines the degree of complexity of a program is

very judgmental. While it is apparent by many that

complexity of a program does have an effect on that

program's development productivity and subsequently its

schedule, it is still difficult to pinpoint how to define a

software program as being complex.

Work Breakdown Structure (WBS). Many experts believe

that the existence of a Work Breakdown Structure in a

software development program is vital to that program staying

on schedule. Pressman states, "The degree of project

structure also has an affect on estimation risk" (29:81). He

refers to structure as to the ease with which a program can

be broken down into a WBS or "compartmentalized" (29:81).

Bruce and Pederson state the central theme of their book is

that "all software projects . . . should be planned and

managed along structured guidelines" (7:1). Having

structure to a software development program is the primary

reason many experts stress that a successful software project

will have a complete WBS.

Wendt and Evans say, "Assembling the specific production

tasks into a WBS is the heart of the structure which will be

used for cost and schedule control (45:1060). They go on to

say that because the product tasks cannot be identified in

detail at the beginning of a program, the estimator must rely

on the WBS to develop early estimates of cost and schedule

(45:1060).

49

Paul Rook gives a good explanation of the importance of

a WBS to a software development program:

The clear emphasis in the modern approach to
software engineering is to focus attention on the
overall development process. This is the aim of
structured software development which breaks down
the project into a series of distinct phases, each
with well defined goals, the achievement of which
can be verified, ensuring a sound foundation for
the succeeding phase. It also breaks down the work
to be performed into a series of discrete
manageable packages, and creates the basis for the
appropriate organisational [sic) structure. This
allows overall planning of 'how' the software is
going to be developed as well as considering 'what'
is going to be developed as the product (37:71.

Howes also advocates decomposition of the software

development into "work packages" which he says can be managed

from beginning to end by one person. He says once the

components are broken down to this level in the WBS, then

estimation should take place for each component (23:28).

Finally, Howes says, "The schedule for your project is the

composite of all work package schedules" (23:29). Bruce and

Pederson agree with this when they say by structuring the

program, one can "reduce the estimating task to a large

number of more precise estimates rather than a single task"

(7:20).

Jack Cooper contends that partitioning into smaller

packages allows managers to avoid "having to resort to

percentages in status tracking" because partitioned packages

will be small enough that "they can be considered either not

started or completed (0 to 100% complete)" (14:24).

50

The size of these "discrete manageable packages" and

adding the schedules for each package together to get a full

schedule has been the subject of some discussion in

literature.

Brooks has said, and many in the field seem to agree,

that by continuing to partition a program into smaller and

smaller components, in order to have the work progress more

quickly by adding more programmers, does not always work

(7:19). Brooks states,

Since software construction is inherently a systems
effort - an exercise in complex interrelationships
-communication effort is great, and it quickly
dominates the decrease in individual task time
brought about by partitioning. Adding more men
then lengthens, not shortens, the schedule [7:19).

The key here is communication. Brooks believes that

many tasks that are partitioned still require communication

among other sub-tasks in order to be completed (7:17). This

extra effort in communication more than offsets any gain in

schedule that might be had by partitioning the tasks in

order to add more programmers to development program.

Another point that Brooks makes is that a task by itself

has a probabilistic effect on schedule (7:14). When that

task is partitioned into smaller sub-tasks, each of these

sub-tasks also have a probabilistic effect on schedule.

When these sub-tasks are chained together to form the task,

"the probability that each will go well becomes vanishingly

small" (7:14)'.

51

In summary, having a WBS can help to predict the

schedule of a software development program in its beginning.

However, there is a point at which further partitioning of

tasks in a WBS may work to lengthen a schedule rather than

shorten it. This Is due to the problems of communication

required between the programmers and the greater probability

of more errors within each task.

Amount of Prior Planning Performed. Another factor

somewhat related to the WBS, and stated by many experts as

having an inverse affect on software development schedules,

is the amount of prior planning performed. Cooper states,

"The lack of comprehensive planning prior to the initiation

of a software development project is a very pervasive

failing" (14:22).

A good software development plan, Cooper says, will

contain "a description of the development organization, the

technical approach, the milestones and schedules, and the

allocation of resources" (14:22). The benefits of an

adequate plan include "providing the developer with the means

to coordinate schedules, control resources, initiate actions,

and monitor progress of the development effort" (14:22).

Rook states a good plan is based on the WBS which is produced

during the work definition process (37:9).

As stated earlier, the results of Inadequate planning

can be disastrous. Wendt and Evans say inadequate planning

can result in "a pattern of unanticipated project activities

52

and frequent unplanned development catastrophes and crises"

(45:1055).

After analyzing the planning factor, it is evident that

if the software development program has no plan or a poor

plan from Its onset, the estimator can assuredly add many

more person-months to the schedule estimate.

Software Development Standards. Software development

standards (sometimes called software metrics) are standards

for development practices that have been documented as

occurring on past software development projects (29:82).

Many experts believe schedules can be .predicted more

accurately if standards that have worked in the past are

used on current projects. Pressman emphasizes this belief in

the following statement:

By looking back we can emulate things that worked
and improve areas where problems arose. When
comprehensive software metzcs for past projects
are available, estimates can be made with greater
assurance, schedules and overall risk can be
reduced [29:821.

Using standards may, in fact, improve the prediction of

schedules, but the problem lies in the availability of these

standards. As Wolverton states, "There are virtually no

objective standards or measures by which to evaluate the

progress of computer program development" (47:156). Bruce

and Pederson agree when they say, " The second major problem

in estimating software development costs is the lack of

accurate measures of prior costs . . ." (7:17). They also

believe that "without reference standards it is nearly

53

impossible to accurately estimate the cost of a new project"

(7:17).

In conclusion, it is commonly agreed that standards,

when available, will enhance the ability to accurately

predict schedule.

Use of Manacement Princinles. Another factor that

experts have mentioned in literature and is related to

software development standards is the use of management

principles. Surprisingly, experts often mention software

projects as having failed simply because there were no

standard management principles or policies existing to guide

the project. Thayer and Pyster commented that, in the 1960s

and early 1970s, "chaos" existed in software development

primarily because managers had no systematic approach

available to them for managing large software projects

(40:2). This time of chaos is past, and today there is a

more widespread use of standard management principles for

managing software development projects. Thayer and Pyster

state,

Since 1970 great strides have been made In
understanding how the manage large software
development projects. There have been many
successful deliveries of major defense and space
systems; perhaps the most well-known of the 1980's
is the Space Shuttle software for NASA [40:21.

Thayer and Pyster also state that TRW, Inc. (a leader in

the software development industry) requires project managers

of large projects to follow a standard set of software

development policies (40:2). Finally, Thayer and Pyster

54

comment that current advances in management science can be

applied as management principles for software development

projects, particularly in the area of scheduling (40:2).

T.K. Abdel-Hamid and S.E. Madnick developed a model that

helps software development project managers decide when to

use particular management principles and tools (1:15).

Through their research, Abdel-Hamid and Madnick found that,

in software development projects, a "feedback loop" similar

to Figure I exists (1:19). They explain through various

techniques an estimate is produced, and from this estimate a

schedule is developed. This schedule is then the basis for

management actions and these actions or principles used

affect worker performance. Worker performance is the input

for future estimates and the loop starts again (1:19).

Figure I
Software Development Project Feedback Loop (1:19)

(0- Esimation

Performance se s

-Actions. Decisions *- -

Abdel-Hamid and Madnick's point is that "knowledge of

project schedules was found to affect the real progress rate

that is achieved" (1:19). They also say that all the

dynamics of this loop affect the schedule of a software

development program; therefore, they conclude scheduling is

55

not Just producing better estimates but encompasses a whole

host of other management problems requiring the use of

management principles as well (1:19).

Volverton says that, at TRW, they have established five

management principles that *apply throughout the software

development cycle to reduce the problem of control to

manageable size" (47:157). These principles deal with: 1)

Producing adequate software documentation that management can

use to control the project; 2) Conducting technical reviews

to acquire customer approval of the software criteria before

a schedule is developed; 3) Controlling the software

physical media to "assure use of a known configuration"

throughout the development life cycle; 4) Application of

software configuration management, controls and procedures;

5) Developing a data reporting, repository, and control

system for use by developer and user (47:157). These

principles would be a good basis for other software

developers when establishing their own management principles.

Software Proarammer Ability. Many experts believe that

there are characteristics about the person prograiming the

software and characteristics about the software that relate

to the programmer that affect the software development

program. Aron believes that such factors as progranmer or

programming team familiarity with the "hardware, software,

and subject matter of the project" will affect the schedule

of the development program (2:262). Aron also says the

56

development environment in which the programmers must work

will affect productivity. If the environment contributes to

poor communication because of dispersion of the programmers

or if the facilities are unpleasant, costs will increase due

to reduced productivity (2:262).

Keider says one misconception estimators have when

rating the ability of a programmer at the beginning of a

software development program is that programmers are

considered "universally expert" and to be equally competent

"analysts, designers, programmers, librarians, and

documentation specialists" (26:55). Program Managers will

assign any of the functions to the programmer with little

regard for the programmer's ability and "invariably, this

results in project delay" (26:55).

Boehm circumvents this rating of the individual

programmer by saying, "the important attribute to rate is not

average individual . . . programmer capability, but the

effective . . . programmer team capability" (6:509). He

prefers also to include in the rating such non-tangible

factors as "team's cohesiveness, communicativeness, and

motivation toward group versus individual achievement" in the

programmer rating (6:509).

Statements made by experts in the software development

field suggest that accurately rating the programmer and

programmer team is important when attempting to accurately

predict the schedule of a program. The problem occurs when

57

trying to quantify factors such as motivation that are

difficult to identify on the surface.

Data Base Reguirements. Data base requirements occur as

a result of the outputs (reports, cathode ray tube (CRT)

screens, audio response, graphics, etc.) the user requires of

the software development program. As Donelson states once

the user has defined the reporting requirements, "the systems

analyst must then determine the data base requirement to

support this reporting capability" (17:73). Donelson also

urges the user to "participate aggressively in this data

base definition activity" to ensure an acceptable product

(17:73).

Boehm says the factor to be considered is really the

"overall size of the data base to be designed, assembled, and

validated prior to acceptance" (6:502). *He also states,

Relatively little has been determined about the
effect of this factor. The Doty study indicated it
had a 'minor' effect, but no quantitative data were
given. The Air Force Industry Software Cost
Estimation Workshop considered it an important
factor but provided no estimates on the magnitude
of its effect (6:504].

From a review of the literature it is evident that

several experts see the data base requirement as affecting

the software development effort, but, as of yet, no

conclusive evidence exists to show the extent of the effects.

Allowance for Testing. This factor describes the amount

of time allowed in the life cycle for System Integration and

Testing. Ideally, if the software program is developed

58

correctly and perfectly, the amount of time required for

testing and debugging should be zero; however, this is never

the case. Brooks elaborates,

No parts of the schedule are so thoroughly affected
by sequential constraints as component debugging
and system test. Furthermore, the time required
depends on the number and subtlety of the errors
encountered. . . . Because of optimism, we usually
expect the number of bugs to be smaller than it
turns out to be. Therefore, testing is usually the
most mis-scheduled part of programming [7:19].

Donald J. Reifer, developer of the SoftCost-R software cost

estimation model, says that one component of a sound

technical approach to software development is that adequate

attention be placed on testing (35:126).

There are tools currently available to assist in

detecting errors in software and assist in making the test

phase of the life cycle as efficient as possible. However,

as Wingrove notes, "Reports of a lack of discipline on test

methods and metrics can have catastrophic consequences for

interfacing and integration" (46:5). This in turn could lead

to further schedule delay.

The main point regarding test is that it should not be

optimistically shortened when developing the development

program schedule; but instead, it should be realistically

. lengthened. Also, tools to aid in testing should be used to

increase efficiency.

Use of Software Development Tools. As mentioned above,

several experts believe the use of software tools may

increase efficiency in the test phase of software

59

development, but many experts believe that using software

tools may also increase productivity in other phases of

software development.

Rook states, "The earliest tools were concerned with the

production of code" (37:7). Today, however, there are many

more tools available to the developer that will assist in

"specification, design, estimating, planning, documentation

and configuration management" (37:7). Bruce and Pederson

highlight the importance of software development tools.

With the recent growth in the number of
minicomputer - and microprocessor - based systems
being developed, this factor has become
Increasingly Important. The cost estimator must
consider how the software will be developed,
tested, and maintained and what tools will be
needed to accomplish these tasks. For systems
developed for large-scale computers, a host of
compilers, data base managers, editors, display
interface packages, flow chart packages, plot
packages, utility routines, and test data
generation tools are generally available (8:22].

The benefits of using software development tools are

numerous and only limited by the number of tools available.

Rook contends that software development tools can

assist In increasing productivity and visibility of
work achieved, provide source of data for future
proposal preparation, estimation and project
planning, and maintain continuity between projects
[37:7].

The conclusion is that, when software development tools are

available, they should be used to decrease development

schedule.

Identification of Resource Reguirements. Identifying,

as precisely as possible, the resources required to complete

60

the software development program, many experts believe, is

vital to accurately predicting the software development

schedule. Brooks relates a story of one Program Manager who

found schedules consistently taking twice as long as

estimated. After investigation, "the estimation error could

be entirely accounted for by the fact that his teams were

only realizing 50 percent of the working week as actual

programming and debugging time (7:89). This was due

primarily to the unavailability of resources because of

"machine downtime, higher-priority short, unrelated Jobs,

meetings, paperwork, company business . . . " (7:89).

Resources were not properly identified because "an

unrealistic assumption about the number of technical work

hours per man-year" was made (7:90).

Pressman also notes that determining the availability of

the target machine (machine on which the software will be

used) is important when estimating schedule (29:85). Extra

time should be taken so that all resources that must be used

during the development program can be identified and their

availability determined in order that program schedule can

more accurately be estimated.

Other Factors. There are other factors that while not

elaborated on in detail by experts, they are often mentioned.

These factors are listed below.

1) Use of a Higher Order Language vs. assembly language
(47:159)

2) Interface Requirements (15:290)

61

3) Reliability Requirements (8:21)

4) Type of software to be developed (47:159)

5) Type of contract for the development program
(47:159).

6) Recurring neglect for software maintenance
(38:52).

Gn2, 1iaa±. After a review of the current literature on

software development, written by notable experts in the

field, twelve factors have been Identified as consistently

being mentioned by experts as affecting software development

schedules. These factors are presented in Table 3 below.

Other factors have also been mentioned by experts, but not as

frequently, or In as much detail, as these twelve.

Table 3

Factors Consistently Identified By Experts
As Affecting Schedule

1. Lines of code
2. Requirements definition
3. Complexity
4. Work Breakdown Structure
5. Amount of prior planning performed
6. Software development standards
7. Use of management principles
8. Software programmer ability
9. Data base requirements
10. Allowance for test
11. Use of software development tools
12. Identification of resource requirements

Ouestion Two

What is the Importance of schedule risk to a software
development program?

a) To what degree do program menagers consider
schedule risk when estimating the cost of a
software development program?

62

The first part of this question was answered by a review

of current literature. The sub-part to this question was

determined after interviewing program managers and engineers

from the various product divisions of AFSC who have had

experience in software development and experts in the field

of software development in private industry.

Review of Literature. To determine the importance of

schedule risk on a software development program, one can

examine what program managers and engineers who have managed

or who are currently managing software development programs

have said about schedule risk and how it has affected their

programs. As seen earlier in the review of literature

supplied in answer to Investigative Question One, software

development program managers/engineers and experts have shown

a keen interest in schedule from their readiness to discuss

the factors that affect schedule in their writings. Because

many of these people are very concerned with the factors that

affect schedule in their development programs, it would also

seem they would be concerned about the schedule risk (or the

probability of the program not being completed on time)

associated with their program.

For a software development program manager, the reasons

for placing importance on schedule risk become intuitively

obvious. The first and far most important reason is

allocation of resources. When the schedule of a software

development program is set, resources are allocated to the

63

fulfillment of this schedule. If the schedule slips, more

time (an allocated resource) is required and subsequently

more resources that were not planned on being allocated to

the program must be allocated. These later allocated

resources are usually more costly because of the fact they

were not allocated for in the first place..

Bruce and Pederson emphasize the importance of schedule

risk when they contend one of the major problems in

estimating software development costs is the "high level of

risk and uncertainty in the estimate" (8:16). They believe

that schedule risk and uncertainty are basically

attributable to three factors. These factors are: 1)

requirements are subject to change; 2) innovation may be

required during the development process; 3) risks are

inherent in the software development process because errors,

which are inevitable, may cause iteration over prior

activities (8:16).

Rook has slightly different ideas on the factors that

comprise schedule risk. He says the sources of risk can be

placed in three main categories (37:8). These categories

are: 1) perturbations, which he defines as requirements

change, and detection of problems, errors and failures; 2)

personnel, defined as the wrong people available, and too

many/too few people available; 3) project environment, which

comprises an undefined methodology, unknown quality, errors

64

detected late, and inadequate control, technical skill,

support and visibility (37:8).

Donald J. Reifer, author of "The Software Engineering

Checklist," also relays the importance of schedule in his

writing. In his article, he lists schedule risk as one of

the top items management should place on their software

engineering checklists (35:127). He says the manager should

ask, "Is the software development schedule reasonable and has

adequate time been allocated for test?" (35:127). He

believes the typical software development schedule does not

allocate sufficient time for test and subsequently increases

the program's schedule risk (35:127).

Thomas H. Bruggere, author of "Software Engineering:

Management, Personnel and Methodology," gives his perspective

on the importance of examining schedule risk. He says that

schedule risk should be examined throughout every phase of

the software development life cycle.

Problems that are discovered during one phase of
the project must be fed back to an earlier phase to
be fixed. Obviously, the later a problem is
discovered and the farther back it must go to be
solved, the more expensive the solution [9:25].

He also emphasizes that because schedule risk is an important

area for examination, program managers should utilize the

review process to ensure design goals and specifications are

being met (9:26). He also believes that program managers

should closely track schedules to ensure the project will be

completed within allowable time limits (9:26).

65

Driscoll states there are two areas where the program

manager can protect the program from cost and schedule

Impacts of changes and thus reducing schedule risk. These

areas are planning and configuration management (19:47).

Driscoll explains substantive, early planning can work to

reduce schedule risk by *providing schedule flexibility, and

adequate computer size" (19:47).

The second reason those Involved with software

development programs are concerned with schedule risk Is

political. It becomes a great embarrassment to all those

involved when a project slips its schedule. Often the

success of a project is not Judged by its total quality but

by whether or not the project was completed on time and on

cost.

Dr. Fred Brooks was part of the management team charged

with developing the massive software for the IBM 360 system.

He commented after the project's completion, "the effort

cannot be called wholly successful . . ." (7:78). Reasons

Brooks cited for the project's failure were *the product was

late, it took more memory than planned" and the "costs were

several times the estimate" (7:78). Brooks references

schedule as the first factor contributing to failure In the

08/360 project and demonstrates the importance software

development program managers, and those for whom the software

is being developed place on schedule.

66

Howes contends that one way to counteract schedule risk

is to develop a proven methodology for conducting the

software development and stick with it (23:34). He believes

schedule risk can be reduced by using a proven methodology to

develop a WBS (23:34). From this WBS cost and schedule

estimates can be made. The WBS can also be used to produce a

baseline for more accurately measuring the progress of the

schedule (23:34).

Discussion of Interview Results. To what degree do

program managers and engineers consider schedule and schedule

risk? The answer to this question was deduced from an

examination of two areas: 1) the degree to which program

managers/engineers consider, in their estimates, the factors

that were determined to affect schedule risk; 2) the

importance program managers/engineers place on the factors

they have determined from their experience affect schedule

risk. By examining the concerns of those in the field toward

the factors that affect schedule, a deduction can be made as

to how schedule is considered when developing a software

development program estimate. The interviewees were also

asked other questions related to software development (see

Appendices A & B), and the results of these questions will be

briefly discussed also.

Twenty people, comprised of program managers and

engineers from the various product divisions of AFSC, and

persons considered to be expert or experienced in the area of

67

software development in private industry were interviewed

using the questionnaires in Appendices A & B. Their

opinions on the factors affecting schedule and the importance

placed on schedule risk were as varied as their backgrounds.

The following paragraphs are a summation of the interviews.

Note: While conducting these interviews, it was made clear

to those being interviewed that it was not the intention of

this author to quote persons' opinions specifically;

however, the interest here is to get a general consensus on

answers to the questions asked in the interview. Particular

DOD software development programs are discussed in a general

sense, and not specifically identified.

By far, changes in requirements was identified most as

having the greatest impact on the schedule of a software

development program; however, reasons given by respondents

for these changes in requirements varied.

Those interviewed who were contracting with the

government to develop software unanimously identified changes

in the specification of requirements by the user as being the

reason for requirements changes during software development.

The contractors often stated that in the early stages of

software development, the users do not know exactly what they

want the software to perform. In fact, users, at times, may

not even finalize the requirements until the later phase of

Critical Design Review (CDR).

68

DOD program managers and engineers also gave reasons for

requirements changes. Contrary to what the contractors have

stated, one respondent indicated that the problem was the

contractor often did not understand what the user wanted.

Another stated that requirements changed because there was a

change in the standards for the weapon system for which the

software was being developed. This appears to be a unique

situation. Other reasons for requirements changing were

changes in the hardware for which the software was being

developed and changes in concerns for the performance of the

software (e.g., safety concerns on an avionics system).

One representative of a company that markets a software

development program estimation model stated that while he

worked for the DOD he was involved in a software development

program that actually underran its schedule. The

representative said the reason the program did not overrun

its schedule was because the schedule was set at no greater

than 14 months from the beginning of the development program.

The program manager of the program also stated that there

would be no changes in the software requirements allowed, in

other words, no Engineering Change Proposals (ECPs). This

rule was held throughout the development process, and as a

result, no delays in schedule occurred as a result of

requirement changes. in fact, as was noted earlier no delays

occurred at all and the program was completed slightly under

schedule.

69

This example raises an important point. By not allowing

requirements to change once a software development program

has started, this example has shown that it is possible to

meet or underrun an estimated schedule.

The complexity of the software being developed was

another factor often mentioned by the respondent as affecting

the software development schedule. Complexity in itself is a

very broad term. Depending on which software development

estimation model is used, complexity can include such areas

as the structure of the software (i.e., one module versus a

string of modules that must be integrated), what type of

language is used (i.e., higher order versus assembly) and

what are the display requirements (i.e., simple input/output

versus interactive). Generally, the more sophisticated these

variables become, the more complex the software. One

respondent stressed that complexity is a subjective factor

because it is basically one person's opinion. A programer

experienced in the more sophisticated software complexity

variables may not rate the software being developed as

complex as a programmer with less experience. The respondent

went on to suggest that the development of industry standards

in the area of determining the complexity of a software

program would be beneficial.

The number of development sites, and whether or not the

hardware and software are being developed concurrently, are

two more factors mentioned by several interviewees as greatly

70

affecting the schedule of a software development program.

One respondent said that in a typical system program office

(SPO) scenario there will be a very general specification for

the software and a very general specification for the

hardware. Both the hardware and software will be developed

at different development sites. Problems that affect

schedule occur when the hardware and software are complete

and the Integration of the two is attempted.

Also mentioned by the respondents as affecting schedule

was experience level. The experience of the programmer was

mentioned most often. Examples of programmer experience are

the degree to which the programmer is familiar with the

language being used to develop the software, and the

experience the programmer has with similarly structured

programs. One respondent also said that the experience the

contractor as a whole has with the type of software being

developed will greatly affect schedule.

The use of software tools was one more factor mentioned

frequently by the interviewees as affecting software

development schedule. Many agreed that if good software

tools are available, and the programmers are trained in their

use, schedule can be reduced considerably.

Surprisingly, the number of lines of code and type of

code being developed were factors not mentioned often by the

respondents as affecting schedule. This is surprising

because of the heavy dependence of estimation models on

71

predicted lines of code for determining schedule. The

response may be an indication that estimators' ability to

predict the number of lines of code for a software

development program is improving, and, subsequently, this

factor has less affect on schedule. One respondent did note

that software that can be developed from reusable code and

that requires simple inputs/outputs, will help to minimize

schedule delays.

Another factor mentioned as affecting schedule was

whether or not the contract is a military contract because of

the additional documentation and formal reviews required by

military contracts. One respondent noted that his firm

continuously experienced schedule slippage because of the

time it took to get documents reviewed and approved by

government personnel.

Finally, the factors time and memory constraints, the

facilities available, the database requirements, whether the

target computer was also the development computer, and use of

management principles were also briefly mentioned by one or

more respondents as factors which affect schedule.

One aspect that was noticeable throughout all the

interviews was that the interviewees were all very adamant

about the factors they believe affect schedule. The

respondents also agreed that stronger control of these

factors would work to reduce schedule. This gives the

indication that software development program

72

managers/engineers and experts in the software development

field place importance on determining the factors that affect

development schedule, and effectively controlling these

factors.

In addition to being questioned on the factors that

affect schedule in software development, the interviewees

were asked other questions concerning software development in

order to obtain a more rounded picture of what is going on in

the field. The results of these additional questions are

discussed below.

The interviewees were asked typically, what type of

software programs they had experience with. The majority had

experience with large software development programs (large

being greater than 20000 lines of code). The programs under

development ranged from management information systems to

avionics systems to flight control systems and simulators.

The interviewees were also asked which software

development cost models they were familiar with. All of the

respondents were familiar with, or had heard of, the Boehm

COCOMO model. Many were also familiar with System-3 and

Price-S. Other models mentioned were the Putnam SLIM model,

the Tecolote Research, Inc. model and the Ballistic Missile

Office (BMO) model.

The respondents were also asked whether they thought a

schedule risk factor, which would affect the probability of

the schedule being predicted by the model actually occurring,

73

should be incorporated into the cost model; or should

schedule be predicted by combining weights of other factors.

The majority of the respondents felt that the probability of

meting the schedule of the software program should be

determined from a combination of factors, and not from a

single schedule risk factor Input by the user.

Finally the respondents were asked to rate the

correlation of all of the input factors used in the five

models being analyzed to schedule (see Appendix A,

Attachment 1 for display of the factors and rating scale).

The results from this question were tallied. Requirements

volatility was identified by the respondents as the

estimation input parameter having the highest correlation

with schedule. Requirements volatility is an input parameter

for PRICZ-S, SoftCost-R, SPQR/20 and System-3 and the updated

COCONO model. The top ten input parameters identified by the

interviewees as having the highest correlation with schedule

are sumarized in Table 4.

Table 4

Model Input Parameters Identified As Having
The Highest Correlation With Schedule

1. Requirements Volatility
2. Amount of Hardware Under Concurrent Development
3. Iffort Expended During Integration and Testing

Phase
4. Development Computer Accessibility
5. Applications Experience With Similar Projects

(Tie)
5. Deliverable Lines of Source Code Excluding

Documents
6. Schedule Constraints

74

Table 4 (cont.)

Model Input Parameters Identified As Having
The Highest Correlation With Schedule

7. Complexity of the Logical Design
(Tie)

7. Development Computer Availability
8. Number of Lines of New Source Code
9. Level of Interface With Other Projects or

Organizations
10. Logical Complexity

Ouestion Three

What methods for determining schedule are currently
used in software development cost models and have they
been tested and/or validated?

a) Which of these methods appear to be most valid?

Roftware Development Schedule Theory. Most software

estimation models rely on the theory of the Rayleigh-Norden

curve as the basis In determining program schedules. Lord

RayleLgh, the British Nobel Laureate, originally described

the curve that Is now used to depict the software project

life cycle pattern (32:4). Peter Norden of IBM was the first

to relate the software project life cycle to the Rayleigh

curve (36:ii).

Worden showed that complex research and development

projects are composed of overlapping phases of well defined

manpower build-up and phase-out (27:80). He calls this

relationship the Life-Cycle Manpower Model (27:79). These

cycles, when placed together, comprise a larger cycle in its

entirety (27:80). This bell-shaped curve is called the

Rayleigh-Norden curve (see Figure II).

75

Figure II
Rayleigh-Worden Curve (27:80)

H
a
n

p
0

e

r

Time

Typically the Rayleigh-Norden curve has a long tail to

the right. Reifer states, "The fact that these cycle curves

have long tails explains why projects slip. When the project

is 90% done in work, it is only 2/3 done in time" (36:ii).

Horden says each cycle can be described by the equation:

-ats
y' - Kate (4)

where,

y' - manpower utilized each time period,

K - total cumulative manpower utilized by the end of
the project,

a - shape parameter (governing time to peak manpower),

t - elapsed time from start of cycle,

e - the base of the natural system of logarithms
(27:80).

Harden states that because the linking relationships of

the cycles have been "encouragingly stablew over a wlxfa range

of projects for a number of years, projections of manpower

and time requirements can be made on the basis of these

76

cycles (27:84). This Is precisely what many companies have

done in developing their estimation models.

Review of Models Salected for Analysis. To answer this

investigative question, data was run on five software

development estimation models currently in use by the DOD and

private industry. The models were selected based on their

availability for use with this research effort.

The models selected for discussion and analysis were:

1) COnstructive Cost MOdel (COCOMO) (4:4),

2) Price-S (34:1-1),

3) Softcost-R (42:1-1),

4) System-3 (13:1-1),

5) SPOR/20 (39:1).

The Putnam SLIM estimation model was not selected for

analysis because it was not easily accessible for use.

Descrintion of the Data. To evaluate these models for

their accuracy in predicting the schedule of a software

development program, data from an actual software development

project was run on each of the models. The data is presented

in Appendix C. Bach model determined what the schedule for

the project should be and this result was compared to the

actual schedule for the project.

The data on the software development project was

obtained from the Software Cost Data Base which was compiled

by Paul 0. Punch of the MITRE corporation for use at MITRE

77

and the Blectronic Systems Division, Hanscom AFB, MA and Is

not authorized for public release (22:v).

The Software Cost Data Base was compiled in 1987 for two

reasons. First, analysts at NITRZ and ZSD have found that

software estimation models are often based upon data bases

that my not represent 3SD program, "vhich are typically

large, embedded, complex, highly reliable, real-time,

military applications* (22:v). Second, "the accuracies of

cost estimates are not evaluated at the completion of

projects since there is not budgetary Justification to do so"

(22:v). Therefore, little historical data exists to

"enhance the personal experiences of cost analysts and

software project mmnagersO (22:v).

The Software Cost Data fame consists of 26 projects and

comprises "a total of 110 computer software configuration

Item (CSCI)" (22:vL). The sizes of the projects widely

vary. The largest project in the data set has well over 1

million lines of code and the smallest has 9000 lines of code

(22:A-11).

One average project was selected from this data base to

run as a test case in each of the models. Number of lines of

code (LOC) was the variable used as the basis for determining

an average project. Projects at the high and low extreme

ends for LOC were eliminated from the calculation and LOC for

the remaining projects were averaged together. The average

number of LOC for the data base was 178,663. The project

78

having an LOC count closest to this number was project 124

with 185,600 LOC; therefore, project #24 with modules A, B,

C, and D was chosen as the test project to be run on each of

the models.

Analysis of Results by Model. The data from project 024

was used as input to each of the software development

estimation models selected for analysis. The following

paragraphs are a discussion of the resulting output by model.

COCONo. COCOMO, as noted earlier in Chapter II, is

a non-proprietary software development model developed by

Barry Boehm. After accumulating the data for the data base,

Paul 0. Funch, developer of the Software Data Base used the

data to evaluate COCOMO's ability to estimate the type of

software program commonly developed at 3 SD.

Funch examined five of the COCONO equations. Among the

equations Funch examined were the effort and schedule

equations for the embedded mode of the Basic COCOHO

Intermediate COCOMO models (22:vii). Ttese equations were

selected for use in this research. Recall, the Basic COCOHO

equation for effort in the embedded mode is:

N - 3.6(KDSI) '-0° (5)

where MM is the number of man-months required to develop the

software product and KDSI is the number of thousands of

delivered source instructions (4:75). The Intermediate

COCONO Nominal effort estimating equation for the embedded

mode is:

79

MMn.m a 2.8(XDSI)1-ao (3)

where MnI.. is the nominal estimate of man-months required to

develop the software product (4:117). With the Intermediate

COCOMO model, this nominal estimate is adjusted *by applying

effort multipliers determined from the project's ratings with

respect to the other 15 cost driver attributes" (4:117).

The Intermediate COCOMO adjusted estimating equation is:

MM.. (M.,..)(AF) (6)

where RAF are the product of the effort adjustment factors

found by rating the 15 cost driver attributes (4:120). To

determine schedule or duration (TDBV), the result of this

equation is input back into the Basic equation for schedule:

TDNV - 2.5(M1) 0-0 (4:75). (7)

Using the Software Cost ata Base, Punch recalibrated

the Basic and Intermediate COCOMO estimating equation by

"fixing the exponent to the value established by Boehm and

calculating the best fit coefficient" (22:vi). The

recalibrated Basic COCONO equations for effort and schedule

are:

MN - 6.5(XDI) 1-21 (8)

TDNV " 3.8(N)- 0 (9)

The Intermediate COCONO estimating equations as recallbrated

by Punch are:

1 a1d&. = 3.3(KDSI)1- 0° (10)

M41aj a 3.3(KDBI) 1- 0 (RAF) (22:ix). (11)

80

Punch states that the Boehm schedule equation for the

embedded mode usually underestimated durations of projects in

the ZSD/HITRZ data base (22:vii). lunch recalibrated the

coefficient using 12 projects (22:vii).

Funch states that when this recalibrated schedule equation

(shown above) was used with the data in the Software Cost

Ra±&.JmI_.U "the estimates were found to be within 30% of the

actuals 67% of the time" (22:vii). Punch notes that this

performance is nearly identical to that of the Boehm schedule

equation on the COCOMO data base (22:vii). Also, Punch

states, *The Boehm COCOHO schedule equation for the embedded

mode underestimated the durations of all but one project in

the KSD/MITRZ Data base* (22:viii). He says, however, "the

recalibrated equation . . . predicts schedules 52% longer

than the Boehm equation" (22:viii).

Similarly, the Boehm Basic model effort equation for the

embedded mode, lunch found, tended to underestimate actual

subsystem efforts (22:vii). The coefficient for this

equation was recalibrated using 17 subsystems (22:vi).

Punch notes that the value of 6.5 differs significantly from

the Boehm coefficient; however, when the recalibrated

coefficient effort equation was used, "the estimates were

found to be within 20% of the actuals 35% of the time"

(22:vii). Punch states this performance "exceeds the

performance of the Boehm Basic equation on the COCOMO data

base, which had actuals within 20% of the estimates only 21%

81

of the time" (22:vii). Funch states that the recalibrated

Nominal Intermediate model equations for effort in the

embedded mode (and semidetached mode) provided "marginally

better fits to the subsystem data" (22:vii).

Because of the established ability of the recalibrated

equations to better estimate 3aD-type software development

projects, the data from project #24 was run on the

recalibrated equations. The recalibrated Nominal

Intermediate model equations,

H *.o,, a 3.3(KDaI)*-*o (10)

Nadj - 3.3(KDSI) 1-' * (rAu) (11)

were used to calculate effort and the recalibrated Basic

COCOHO equation,

TDV - 3.8(NN)°-0 (9)

was used to calculate schedule or duration for project #24.

Appendix D gives the ratings and effort multipliers

given to each of the COCOMO Intermediate model cost driver

attributes. The effort multipliers were used to compute the

ffort Adjustment Factor. The following is the calculation

for schedule using the Funch recalibrated COCONO Intermediate

equation for effort and the recalibrated Basic COCOHO

equation for schedule:

BNA for Project #24 = 2.83 (see Appendix D),

KDSI for Project 124 - 30200,

M4n.. - 3.3(30.2)1 -a - 250.16

Mbai - (250.16)(2.83) - 707.96

82

TDSV - 3.8(707.96)0 ' 00 - 12.5 months

Actual duration for Project 524 was 26 months, twice that of

the COCOHO model prediction.

EBLc5-s. The project data was run in the PRICE-S

MODS 2--CSCI vith components model because the data for the

project was available by components A, B, C, and D. This

author felt the PRICE-8 model was not as user-friendly as the

other commercial models used in this analysis; the data is

more difficult to input interactively because the model does

not prompt the user for the inputs. The user can also Input

data from a separate file that must be written. The data file

is not difficult to write, but it requires more time than

just inputting the values directly into the model and having

the model iinediately compute the result.

The values Input from the data for each variable in the

PRICE-S model are given In Appendix Z. The output from the

model is given in Appendix F. Recall, the actual duration of

Project 524 was 26 months. This is number accounts for the

time frame from System Design Review (SDR) through Formal

Qualification Test (FQT). The PRICE-8 model estimates the

duration from System Concept (two phases before SDR) through

Operational Test and Evaluatlon (OTE) (three phases after

FQT). For the corresponding time frame for the project data

(SDR through FQT), PRICZ-8 estimated the duration to be 30.4

months.

83

Eaot.ost-R. SoftCost-R, as described earlier, Is a

software development program estimation model developed and

marketed by Reilfer Consultants, Inc. It Is a menu driven

model that this author found to be very user friendly

primarily because inputs are done Interactively. To

initialize an estimate, SoftCost-R asks the user to answer

questions in four different menus: Management Factors Menu,

Staffing Factors Menu, Complexity Factors Menu, and

Bnvironmental Factors Menu (42:11).

The Inputs by variable used for Project #24 with

SoftCost-R are given in Appendix G. The output given for the

data Inputs Is presented In Appendix H.

SoftCost-R predicted the duration of the project to be

21.1 months. Recall again, the actual duration was 26

months.

SZQRM21. SPOR/20 asks the user to Input values for

variables interactively through three menus. The first menu

is titled BPQR/20 Input Variables. It contains general

questions about the project such as what type of estimate is

required (i.e. cost versus schedule or both), what is the

maximum staff size and what is the average work week

(39:10).

The second menu is titled Environmental Inputs. It

contains questions about area such as program design, staff

experience and amount of reusable code (39:18).

84

The third menu is titled Complexity and Source Code

Input Parameters and contains questions about the complexity

of the new code being developed (39:21).

There are two additional menus. The first, Base Code

Input Parameters is used when the software being developed is

an enhancement or maintenance to existing software (39:26).

The second is titled Function Point Inputs and is used when

the user wants SPQR/20 to predict the number of new lines of

code that will be developed (39:27Y.

The SPQR/20 model will estimate development schedule

from the planning activity through the integration/test

activity (39:36). The duration estimated for the

requirements, design, coding and integration/test activities

was used in this analysis because It -most closely describes

the time frame given for the duration of Project #24. The

data which was input into the SPOR/20 model Is given by

variable in Appendix I. SPOR/20 estimated the duration of

the project to be 29.21 months. Recall again, the actual

duration for Project #24 was 26 months. The summary output

from the model is shown in Appendix J.

ftna-3. System-3 Is also a fairly user friendly

model that is also menu driven. One of its menu features

allows the user to break down a large project being estimated

by groups within the project, by tasks within the group and

by elements within the tasks. For this analysis, the data

was run at the project level because the specific information

85

required to run modules At B, C, and D at the group level was

not available.

System-3 also has eight menu screens for input of

variable data. These screens are titled Developer

Technology, Environmental-Computer, Environmental-Product,

Invironmental-Support, Size a Complexity Summry, Development

Constraints, Reuse-Rebuild Impact, and Financial Factors

(13:20). The values input at each of these menu prompts is

given in Appendix K.

System-3 calculated a minimum time estimate for

development time and integration time as 24.69 months.

System-3 also calculated requirements time, however, this

time was not included because it was not included in the

actual duration time of 26 months for Project 324. The

output given for the Project #24 data is given in Appendix

L.

fumrv of Results. The schedule times given by the

five models analyzed for the Project 324 data is summarized

in Table 5 below. System-3 most closely estimated the

duration for Project 024 with a difference of 1.31 months

below the actual duration. The model that predicted farthest

from the actual was the B8D recalibrated COCONO model with a

difference of 13.5 months under the actual schedule. All of

the other four models estimated duration within five months

of the actual schedule.

86

TABLE 5

Estimated Project Duration by Model (in months)

onths Actualfrn

ESD Recalibrated
COCOMO 12.50 26 13.50 (under)

PRICE-S (MODE 2) 30.40 26 4.40 (over)

SoftCost-R 21.10 26 4.90 (under)

SPQR/20 29.21 26 3.21 (over)

System-3 24.69 26 1.31 (under)

fuestion Four

In cost models, what is the significance of schedule
risk?

a) Is schedule risk an independent variable or
does its significance depend on the value of
other independent variables in the cost models
such as size of the program, number of
programmers required, or level of software
sophistication required?

The models selected for this analysis were the same ones

used in the analysis for investigative question three. As

noted earlier, all of the models, except the COCOMO model

were found to contain proprietary algorithm. The main

difference between each of the models in their determination

of schedule was the factors the models used as inputs to

determine a program's estimate.

The Boehm COCOMO model, as mentioned earlier, has 15

effort multipliers. All the multipliers influence schedule

to some degree because they are all used to determine effort

which, in turn, is used in the COCOHO schedule equation. By

87

far, the most significant influence on schedule, however, is

lines of code. The predicted number of lines of code is used

directly to determine effort.

After examining the range of values Boehm assigns each

of the effort multipliers (see Appendix M for values), it is

evident that those with the possibility of most significantly

influencing effort (and schedule) in descending order of

influence are: execution time constraint, product

complexity, main storage constraint* analyst capability,

programer capability and required software reliability. The

other nine effort multipliers have a relatively lower

influence on effort.

PRICE-8 uses a series of equations to determine the

schedule of a software development program. PRICS-8 computes

schedules for design (preliminary and detail), code (unit and

CSC), and test (CSCI). Most of actual values used by these

equations are proprietary, but the factors used to compute

the equations are not. The schedule equations for PRICK-S

rely heavily on these factors:

1) NXWD - represents amount of code requiring new
design (28).

2) NKWC - represents amount of new code required
(28).

3) BLOC - source lines of code required
(34:11-AIO).

4) APPL - the user defined application value
that describes the application mix
of the software (34:11-A12).

88

5) UTIL - the factor describing the fraction of
available hardware cycle time or total
memory capacity used (34:11-A4).

6) CPLX1 - the factor which provides a quantitative
description of the relative effort of
complicating factors on the software
development task. Complicating factors
are product familiarity, personnel
skills, software tools, and any unusual
factors present in the development
environment that affect the development
schedule (34:11-AS).

7) PROFAC an empirically derived parameter which
includes such Items as skill levels,
experience, productivity, and
efficiency (34:11-M1O).

8) PLTFI4 - a value ranging from 0.6 to 2.5 which is
a measure of the customer's requirements
for portability, reliability,
structuring, testing and documentation
required for acceptable contract
performance (34:11-A2).

9) ZTBCH - a technology improvement factor
(28).

The equation for schedule in the PRICE-S model is

B r
Schedule - a * F * VT * CPLX1 (12)-

where,

a, S, r - proprietary values

and,
£ B r

P K * PROPAC ' (PLTFH/K) ' ZTCH

IWT - SLOC * 8* UTIL

where,

K = proprietary value

SLOCm a SLOC * APPL

8 - required effort (28).

89

While PRICS-8 uses all these values mentioned In the

schedule equation, It appears that the key value that is

input first, and the basis for the rest of the equations, is

SLOC.

It Is not clear what types of equations the remaining

three models analyzed; SoftCost-R, BPQR/20, and System-3;

use to derive schedule because no indication is given in

their documentation. However, after running the models, it

Is clearly evident to this author that these models also rely

heavily on the predicted number of lines of code to predict

schedule. One model, SPQR/20 will predict lines of code for

the user with a technique discussed earlier called Function

Points.

The other Inputs to these models (that also affect

schedule to some degree that is proprietary) are basically a

variation of the 15 effort multipliers developed by Boehm for

the COCOHO model. One might assume that the factors-known to

way heavily on schedule for the COCONO equation, such as

product complexity, analyst capability, and required software

reliability, would also weigh heavily in these proprietary

models.

In conclusion, it is evident from examination of the

equations used in COCONO and PRICE-8 that schedule and

schedule risk are significant determinants In calculating

these model's estimates. Schedule risk is a function of the

values of many variables as can be seen by the variety of

90

variables used as inputs Into all five of these models. For

some models schedule is taken into direct consideration when

the models ask if there are any schedule constraints

involved; however, none of the models analyzed here asks for

a single schedule risk input. All appear to derive schedule

risk from a combination of the other variables. The heaviest

weighted of these variables In determining schedule Is number

of lines of code.

Question Five

Can any of these methods be combined or incorporated
into a new and more accurate method for accounting for
schedule risk In cost models?

To address this question, a clarification of the term

methods must be made. Methods in this question means the

processes through which the five models previously analyzed

predict schedule. As noted earlier, this process in all the

models except COCOMO Is proprietary. Therefore, it Is really

uncertain to someone not having knowledge of all the

proprietary algorithms whether or not any of the methods can

be combined or incorporated into a new more accurate model.

However, one can observe from using the models on a

test case, that they all basically require the same Inputs In

various form. Therefore, because these inputs are the crux

of the equations used to predict schedule, more emphasis

should be placed instead on more accurately determining the

values for these variables. That will happen when (and If)

91

standards are developed for aaking the estimation of these

variables as objective as possible.

For Instance, complexity of the program is a relatively

subjective input variable that can vary depending on the

experience of the programmer making the estimation and not

actually performing the work. The prora r working on the

program may have a different value for the complexity of the

program. In the same light, methods for accurately

estimating another crucial input variable, lines of code,

should be investigated as well.

In conclusion, it is uncertain because of the

proprietary nature of these equations whether they can be

combined or incorporated to make a more accurate model;

however, it is certain that methods for more accurately

estimating the variables input into these models should be

developed.

92

V. Conclusions and Recommndations

Conclusions

The schedule of a software development program can be

affected by a large array of varying factors. This research,

however, has identified twelve of these factors as having the

greatest impact on the schedule of a software development

program. Determination of these factors was made through

extensive reviews of literature written by experts in the

software development field. The twelve factors Identified

were: lines of code, requirements definition, complexity,

work breakdown structure, amount of prior planning performed,

software development standards, use of management principles,

allowance for test, use of software development tools and

identification of resource requirements.

These factors were confirmed through Interviews with DOD

program managers/enqineers and commercial software

development estimation experts as heavily influencing the

schedule of software development program. The factor most

often mentioned in these Interviews as causing delays In

schedule was requirements definition. The interviewees

agreed that the requirements of the software development

program are either inadequately specified at the beginning of

development or they are not firm requirements and

subsequently changes causing delays are made during

development.

93

Because changes in requirements definition van

identified most often as being the primary cause for software

development schedule slippage, software development program

managers should investigate ways to more accurately determine

the requirements of a program.

Five software development models were analyzed using a

data base developed by Blectronic System Division of Air

Force Systems Command. The five models chosen were an SD

recalibrated COCOKO model, PRICB-Sa SoftCost-R, SPQR/20 and

System-3. Using data from one ESD software development

project as a case study, System-3 was shown to predict its

schedule with the most accuracy by predicting the schedule

within 1.31 months of the actual. The next most accurate for

this case was SPQR/20, then PRICE-S, and then SoftCost-R.

The worst predictor of the case's schedule was the ISD

recalibrated COCOHO model. Its predtction was 13.5 months

under thp actual.- In summary, it Is evident from this case

that all of the models analyzed except the 3SD recalibrated

COCOHO model did very well at predicting the project's actual

schedule. These four models' predictions were all within

five months of the actual schedule.

An examination of the equations used In the COCONO model

and the PRICE-S model has revealed that these models use a

combination of variables to predict schedule. Some are more

heavily weighted than others. It can be assumed that is also

94

the case with other three models analyzed whose equations

used to determine schedule are proprietary.

To develop a more accurate model for predicting the

schedule of a software development program, emphasis should

be placed not on developing new models but on developing

better methods for accurately predicting the variables which

are input into these models.

Recommendations

Further research in the area of schedule determination

for software development programs is needed in order to help

estimators more accurately estimate these schedules. The

following paragraphs are suggestions for areas of continued

research.

Twelve factors were identified as heavily affecting the

development schedules of software. The number one cause of

delays in schedule identified appears to be Inadequate

definition of requirements. Further research should be done

to determine what are the reasons for changes in requirements

definition and how can changes in requirements definition be

reduced.

Because of time limitations, only one project, Project

#24 data was input into each of the five software estimation

models being analyzed and an estimate was calculated. It Is

realized that one data point may not give a complete picture

of the accuracy of each of the models at predicting schedule.

Therefore, the remaining twenty-five data points of the ESD

95

software cost pata Base, developed by Paul G. Funch, should

also be input into each of the models and allow the models to

calculate estimates for these points as well. From this

data, the standard deviation of estimates from actual

schedules should be calculated for each model. By using

twenty-six data points, a more accurate picture of each

model's schedule estimation capabilities can be presented.

There are several other software development estimation

models available today besides the five models analyzed here.

These models should be identified and the data from the ZSD

Software Cost Data Base should be used as a test case to

determine the accuracy of these models in predicting schedule

also.

Using the ESD Software Cost Data Base for data, the

twelve factors identified in this research as heavily

affecting schedule should be regressed against schedule to

determine which factors are the most highly correlated with

schedule. Once this is determined, a model can be developed

from these factors that will predict the schedule for the

types of software programs developed at ESD.

96

APPENDIX A:

INTERVIEW QUESTIONNAIRE

FOR DOD PROGRAM MANAGERS/ENGINEERS

1) What type or types of software development programs
have you managed recently (i.e. large or small
content, what weapon system was the software being
developed for)?

2) Upon completion, did the software development
program overrun or underrun its cost estimate?

a) What was the initial estimate for the
program?

b) What was the final cost of the program?
c) Were there changes in the software

requirements during the program?
i) If so, at what phase and why?

3) On completion, was the software development program
on schedule, over schedule or under schedule?

a) What was the original schedule?
b) What was the final schedule?
c) Were there changes in the software

requirements?
i) If so, at what phase and why?

4) If the software development program ran over or
under schedule, in your opinion, what were the
factors that caused this over or underrun (i.e.
complexity of the software being developed,
experience of the programmers, number of
programmers used, changes in requirements)?

5) Was a software development cost model (or models)
used to estimate the cost of the software
development program? If so, what model was used?

97

6) Most software development cost models use
proprietary algorithms to develop program estimates.
In your opinion, how do you believe schedule risk
was incorporated into the software development cost
model you used to determine the cost of the program
(if a software development cost model was used)? In
other words, which factors that you input to the
model do you feel contributed most to
determining the schedule of the program? (Factors
for each cost model being analyzed provided
in Attachment 1).
NOTE: Factors are given at the end of this
Appendix.

7) From your experience with software development
programs, what factors do you consider important or
significant when determining the schedule and/or
schedule risk of a software development program?

8) Do you think a schedule risk factor, which will
affect the probability of the schedule being
predicted by the model actually occurring, should be
incorporated into the cost model; or do you think
schedule should be predicted by combining weights of
other factors such as program complexity?

98

ATTACHMENT 1 (page 1 of 5)

The various input factors listed below are used by the
software development program estimating models being
analyzed. You are asked to rate each of the factors In terms
of to what extent you believe they affect the schedule of a
software development program using the following scale:

0 1 2 3 4 5
Very Very

Don't Low Low Somewhat High High
Know Correlation Correl. Correlated Correl. Correl.

Rating Factors

Factors Common to 3 or more models
1. Specification (SPEC) -

functional, procedural, X X X
both or other.

2. Requirements Volat:lity
(RVOL) X X X X

3. Main Storage Constraint X X
(STOR) I - X

4. Computer Turnaround Time X
(TURN)

5. Use of Software Tools (TOOL) X X X -

6. Applications Experience X X X
with similar projects (AEXP)

7. Average Experience X X X
with Techniques used (TECH)

8. Programming Language X X X X
Experience (LEXP)

9. Analyst Capability (ACAP) A A
10. Software Product X X X X X

Complexity (CPLX) W X N"
11. Deliverable Lines of Source X X X

Code Excluding Documents
(DSLOC)

12. Lines of Source Code
Documentation (DocLOC)

13. Reusable Code From Similar X X X X
Projects

99

ATTACHMENT 1 (page 2 of 5) /COL

Rating Factor 4 CO

Factors Common to 2 models
1. Use of Modern Programming X

Practices (MODP) - I
2. Virtual Machine Volatility X X

(VIRT)
3. Execution Time Constraint X X

(TIME)
4. Number of Development Sites X X

-SITES) I I
5. Virtual Machine Experience X X

(VEXP)
6. Programmer Capability (PCAP)
7. Special Display Requirements X X

(Display)
8. Effort expended during the

integration and testing X X
phase (EFTit)

9. Application Complexity X -

10. Number of lines of new X X X
source code

11. Number of lines deleted from- X X
existing modules

12. Number of existing modules X X
reouiring modification

13. Existing LOC a pre-existing X X
code prior to task development

14. Monthly Pay Average X X

Unique Factors by Model
System-3

1. Annual Inflation (Financial) X
2. Max Effort-Person Months -
3. (Estimate) Probability Resuired
4. Real Time Opeiation (RTIM)
S. Rehoting ST!
6. Relaxed Schedule (Min. Ef ort)
I7. Reguizemnts - % Development X
8. Requirements Effort Complete X

at Contract Award
9. Resource Dedication (RDED) X

100

ATTACHMENT 1 (page 3 of 5) /

System-3 (continued)
10. Resource Location (RLOC)

11. Staff - Requirements staff,

Project staff, Development X
staff

i12. System (Virtual Machine) X
Complexity (SYST)13. Effective Productivity

average lines of code x x
comllated by project

person per month

SPQR/20
1. Estimate Scope (Prototype, x

Module, System)
2. Project Estimating Goals X
3. Output Metric (man-months,

years, etc.) X

4. Exempt Personnel x
5. Average Work Week
6. Average Work Year -

7. Other Costs (holds costs X
not estimated by SPQR/20)

8. Project Class (Personal x
program through military

~contract)
9.office Facilities IX1

S10.' Reusable Code Language X1

11. Reusable Code Language Level X
12. Loqical Complexity I

13. New Code Structure
14. New Code Data Co lexity -

15. New Code Lanquaqe
16. Language Level X
17. Base Logical complexity
18. Base Code Complexity X
19. Database complexity X
20. Base Code Language
21. Base Code Language level
22. Base Code Size X

101

ATTACHMENT 1 (page 4 of 5)

Rating Factor

Unique Factors by Model (continued)
Softcost-R

1. Number of lines changed in
other ways in existing X
modules a- --

2. Number of lines deleted as X
entire modules

3. Phase of the life cycle
software work begins

4 Expected user Involvement X
in requirements definition

- =.customer/mplementor X
organizational interface
complexity

6. Level of interface with other X
prOects or oraanj atians

7. Efficiency of implementing X
organiza9ion

8. % of proqra mers doLnq X
design and will work
development

9. Type of technical reviews x
held-----

10. Number of 1/O items X
2enerated per 1000 lines

11. Overall complexity of the X
data base architecture

12. Complexity of the logical X
design

13. % of the program in assembly X
language

14. % of total task will be easy X
- 15.% of total task Wll be ha-d X

16. Classified Security
environment for computer X

- ~(YIN?) - -

17. Amount of hardware under X
concurrent development

18. Development computer X
accessibility

19. Development computer X
availability

20. Maturity of system and X
support software

102

ATTACHMENT 1 (page 5 of 5) M

Rating Factor R.' Ca

Unique Factors by Model (continued)
SoftCost-R (continued)

21. Overall adverse constraints
on program design

22. % of program which Is real- x
time and multi-tasking

23. Software adapted to multiple x
environments (Y/N?)

24. Adaptatlon required to X
change from development
to operational environment
(Y/N?)

PRICE-S
1. INTZGI - the level of

difficulty of integration
and testing the CSCls to x
the system level

02. SCHEDULZ - start of the
system software development- x
activities and completion
dates for activities which
support the software
development phases I

3. LANG - source language to x
used

4. CPLX2 - quantitative
description of the relative x
effect of complicating
factors on the software
development task caused by
hardware/software
interactions. Factors
include new hardware
development and hardware
developed in parallel

COCOMO
1. Required Software x

Reliability (RELY) -

2. Data Base Size (DATA) X
3. Schedule Constraints (SCHED) X

103

APPENDIX B:

I NITER VI EV QUESTIONNAIRE
FOR SOFTWARE DEVELOPMENT EXPERTS

(DOD AND COMMERCIAL)

1) Which software development cost model are you
familiar with? (Choose one or more)

a) COCONO
b) Price-S
c) Putnam-SLIM
d) Softcost-R
e) System-3
f) SPQR/20

2) Upon completion, did the software development
program you have been involved with, and used
this model(s) for an estimate, overrun or
underrun its cost estimate?

a) What was the initial estimate for the
program?

b) what was the final cost for the program?
c) Vere there changes in the software

requirements during the program?
1) If so, at what phase and why?

3) Same as Questionnaire for DOD Program Managers/
Engineers.

4) Same as Questionnaire for DOD Program Managers/
Engineers.

5) Same as Questionnaire for DOD Program Managers/
Engineers.

6) In your opinion, how Is schedule risk
incorporated into this software development cost
model? In other words, which factors input in
the model contribute more to determining the
schedule of the program? (Factors for each cost
model being analyzed are provided in Attachment
1).
NOTE: See Appendix A, ATTACHMENT I for
questionnaire attachment.

7) Same as Questionnaire for DOD Program Managers/
Engineers.

8) Same as Questionnaire for DOD Program Managers/
Engineers.

104

APPENDIX C:

Mitre Project Data

Project # 24 (ArBrCD) 24 A a C

Descrition of Factors

Descr - Mission Description
1- C3 system
2- radar system *2 2 2 2
3- simulation
4- training system

SWfncl - Major Software * 3.8 3.8 11.3 4.9
Function

SWfnc2 - Major Software 4.1 15.3 13.3 5.3
Function

SVfnc3 = Major Software
Function 5.3 17.2 17.1 7.1

*CSCI - Number of CSCIs 6 6 6 6

Simul - CSCIs simultaneously * * * *
resident on Target Computer
are assigned same number.

Specif - Specification
1- functional *
2- procedural
3- 1 + 2
4- Other - match analogous programs

Design = Design Method
1- Top down *
2- bottom up
3- iterative enhancement
4- hardest first
5- 1 + 2
6- 1 + 3
7-2+3

Develop - Development Method
Same as above *

Coding = Coding Method
1- structured code *
2- other, pseudostructured code
3- other, by modules

105

Mitre Prolect Data (page 2 of 18)

Project # 24 24 A B C D

Description of Factors

Testing - Testing Method
1- top down (stubs)
2- bottom up (drivers)
3- specification driven
4- structure driven
5- Other, input/output
6- other, module level testing and

applications software testing
7= 1 + 2
8= 1 + 3 8 8 8 8 8
9- 2 + 3 + 4
10- 3 + 4 + 6
11- 1 + 2 + 3 + 4

V-v - Validation/Verification
Method
1- peer review
2- walk throughs
3- proof
4- none
5- 1 + 2 5 5 5 5
6- 1 + 2 + 3

Formal - Formalisms Methods
1- program design language 1 1 1 1
2- HIPO charts
3- flowcharts
4- 1 + 2
5- 1 + 3
6- 2 + 3
7- 1 + 2 + 3

Software Develogment Tool. Used

Tvlow - # of tools used from list:
Assembler 0 0 0 0 0
Basic Linker
Basic Monitor
Batch Debug Aids

106

Mitre Proiect Data (page 3 of 18)

Project 124 (ArBC,D) 24 A a C D

Description of Factors

Tlow - # of tools used from list: 2 2 2 2
Higher Order Language Compiler
Macro Assembler
Simple overlay linker
Basic Source editor
Language Independent
Monitor

Basic Library Aids
Basic Database Aids

Tnom - # of tools used from list: 2 2 2 2
Real-time or Time-sharing
Operating system
Extended Overlay Linker
Database Management System
Interactive Debug Aids
Simple Programming
Support Library
Interactive Source
Editor

Thigh - I of tools used from list:* I 1 I
Virtual Memory
Operating System
Database Design Aid
Simple Program Design
Language

Performance Measurement
and Analysis Tools
Programing Support
Library with Basic Con-
figuration Management Aids

Set-use Static Analyzer
Basic Text Editor & Manager
Program Flow and Test Case
Analyzer

File Manager

107

Mitre Prolect Data (page 4 of 18)

Project *24 (ABC,D) 24 A B C D

Description of Factors

Tvhigh - # of tools used from
list: 2 3 3 3 3

Full Programing Support
Library
Documentation System
Project Control System
Requirement Specification
Language and Analyzer

Extended Design Tools
Automated Verification
System

Fault Report System
Crosscompilers
Instruction Set Simulators
Display Formatters
Data Entry Control Tools
Communications Processing
Tools
Conversion Aids
Structured Language Tool

Tother # I of other Tvhigh tools
used not listed above. * 0 0 0 0

Tcalc - Calculated Tool Parameter
(Ranges from 1 - vlow to
5 - vhigh) * 3.26 3.26 3.26 3.26

MODP - Use of Modern Programing * .91 .91 .91 .91
Practices
1.24 -vlow
1.1 - low
1 - nom
.91 - high
.82 - vhigh

Begin - COCOMO Project starting
date (SDR) mm.yy 9.82 9.82 9.82 9.82 9.82

End - COCOMO Project completion
date (FQT) 10.84 10.84 10.84 9.84 10.84

Duration - Project duration 26 26 26 25 26

108

Mitre Project Data (page 5 of 18)

Project #24 (A,B,C,D) 24 A B C D

Description of Factors

Actual Schedule Milestones

Note: PDR - Preliminary Design Review
SDR - System Design Review
CDR - Critical Design Review
Int = Beginning of Integration

and Testing
FQT = Formal Qualification Test # of months

PD a PDR - SDR (or Contract Award) * 7 7 7 7
DD a CDR - PDR * 6 6 6 6
CUT a Int-CDR * 6 6 6 6
IT - FQT (or Complete

CPCI integration)
- Int * 6.5 6.5 5.5 6.5

TOT = Total Project Time
(PD + DD + CUT + IT) * 25.5 25.5 24.5 25.5

System Documentation
(Prolect Level)

DOCl a System Engineering
Management Plan (# pages) * * * *

DOC2 = Computer Program Development 33(total)
Plan (# pages)

DOC3 - System Test Plan (# pages) * * * * *

DOC4 - Other Documentation
(# pages) * * * * *

SCnum - Software Change history:
of requirements changes
during software
development phases -
of changes approved. * * * f *

SCloc - Change in DSLOC resulting
from the requirements
changes ft

SCsm = Change in effort resulting
from the requirements
changes - # staff-months *

109

Mitre Project Data (page 6 of 18)

Project #24 (AB,C,D) 24 A B C D

Description of Factors

RVOL - Requirements Volatility Not given
.91 a low (Essentially none)
1.0 - nom (small, noncritical

redirections)
1.19 - high (Occasional moderate

redirection)
1.38 - vhigh (Frequent moderate

or occasional major)
1.62 - ehigh (Frequent major

redirection)

Developmnt and Target Computer Data

VIRT - Virtual Machine Volatility
.87 - vlow (no mjor changes;

minor change every 12
months)

.87 - low (ma. changes every .87 .87 .87 .87 .87
12 no; minor changes
every month)

1.0 - nom (maj. changes
every 6 mos minor
changes every 2 weeks)

1.15 - high (maJ changes every
2 mos; minor changes
every week)

1.3 - vhigh (maj changes every
2 weeks; minor changes
every 2 days)

STOR - Main Storage Constraint
(CPU Memory Percent Utilization)
Maximum % of processing time used
by any group of CaCIs executing
concurrently on single machine.
1.0 - non (<-50%)
1.06 - high (51-70%)
1.21 - vhigh (71-85%)
1.56 - extra hi (86-95%) 1.56 1.56 1.56 1.56 1.56

110

Mitre Protect Data (page 7 of 18)

Project 524 (AB,C,D) 24 A B C D

Description of Factors

TIME * Execution Time Constraint
(Execution Time Percent
Utilization)

Maximum % of processing
time used by any group of
CSCIs executing concurrently
on single machine

1.00 = nom (<-50%)
1.11 - high (51-70%)
1.30 = vhigh (71-85%) 1.3 1.3 1.3 1.3 1.3
1.66 - ehigh (86-95%)

MemC - CPU Memory Constraint
Evaluation

Measures required to
satisfy the reserve
memory requirement

1 - no mem economy measures
req'd

2 a some overlay use orsegmentation req'd
3 - extensive overlay

and/or segmentation
req'd 3 3 3 3 3

4 - complex memory
management economy
measures req'd

TimCt CPU Time Constraints Evaluation
Percentage of software
that requires special
coding effort to enhance
timing performance

1 - no software is cpu
time constrained

2 = <25% of source code
is time constrained 1 1 1 1

3 = 25-50% of source code
is time constrained

4 - 50-75% of source code
is time constrained

5 n >75% of source code
is time constrained

111

Mitre Prolect Data (page 8 of 18)

Project #24 (ABCD) 24 A B C D

Descrintlon of Factors

TURN - Computer Turnaround Time
.87 - low (interactive)
1.00 * no. (ART<4hr) 1 1 1 1 1
1.07 - high (ART<12hr)
1.15 - vhigh (ART>12hr)

ART - Avg Response Time from Job
submission until results
are back in developer's
hands ("logo-to-hardcopy")

Percentage of Source instructions Developed by Rach Access

Batch Batch % of total DSI 0 0 0 0 0

DedP = Dedicated Processor 100 100 100 100 100
- % of total DSI

TBhp - Test Bed with High
Priority ({ of
total DSI) 0 0 0 0 0

Int a Interactive
(of total DSI) 0 0 0 0 0

P/T a Avg Number of Ingineers/
Programmrs per Terminal
which are readily accessible
to the development team
(maximum) not given

Sites - # of Development Sites
and when there are
multiple CSCIs, this I
should indicate the site
(coded by) at which
each CSCI was developed 1 1 1 1 1

112

Mitre Prolect Data (page 9 of 18)

Project #24 (ABCD) 24 A B C D

Description of Factors

TOOL - Use of Software Tools
1.24 - vlow (Basic

microprocessor
tools)

1.10 - low (Basic
minicomputer
tools)

1.00 - nom (strong
minicomputer
or basic
maxicomputer
tools)

.91 - high (strong
mmxicomputer
tools) .91 .91 .91 .91 .91

.83 = vhigh (advanced
maxicomputer
tools)

AEXP - Application Experience
with Techniques Used 1.13 1.29 1.29 1.29 1.29

1.29 a vlow (<4mos)
1.13 - low (5 mo - 3 yrs)
1.00 - nom (3 yrs - 6 yrs)
.91 - high (6 yrs - 12 yrs)
.82 - vhigh 0-12 yrs)

Tech - Avg Experience with
Techniques Used 1 1 3 3

1 - 1-4 mos. avg. experience
2 - 4mos - 1 yr
3 - 1 - 3 yrs
4 - 3 - 5 yrs
5 - >- 6 yrs

LEXP - Programing Language
Experience 1.14 1.14 1.14 1.14 1.14

1.14 - vlov (<- I mo. avg. exp.)
1.07 - low (4 mos - 1 yr)
1.00 - nom (1 yr. - 3 yr)
.95 - high (>- 3 yrs)

113

Mitre Prolact Data (page 10 of 18)

Project 924 (A,BC,D) 24 A C D

Description of Factors

VBXP = Virtual Machine
Experience 1.21 1.21 1.21 1.21 1.21
(development and
target computer
hardware, operating
systems and architecture)

1.21 - vlow (<= 1 mo. avg. exp.)
1.10 - low (4 mos. - 1 yr.)
1.00 a nos (1 yr. - 3 yrs)
.90 - high >- 3 yrzs)

55/T * Average Experience with
Support Software/Tools 1 1 4 4
1 -< 1 mo.
2 -1 - 4 mos.
3 - 4 mos. - 1 yr.
4 - 1 yr. - 3 yrs.
5 - 3 yrs. - 6 yrs.

PCAP - Programer Capability 1 1.17 1 .86 .86
Avg. personnel quality
with respect to overall
industry population.
Based on the programming
team's aptitude for
programing/designing
software, efficiency
and thoroughness, and
ability to communicate
and cooperate.

1.42 - vlow (15th percentile)
1.17 - low (>35th percentile)
1.00 - nom (>55th percentile)
0.86 - high (>75th percentile)
0.70 - vhigh (>90th percentile)

ACAP - Analyst Capability 1 1.19 1 .86 .86
Avg. personnel quality
as described above

1.46 - vlow (15th percentile)
1.19 - low (>35th percentile)
1.00 - nom (>55th percentile)
0.86 - high (>75th percentile)
0.71 - vhigh (>90th percentile)

114

Mitre Project Data (page 11 of 18)

Project #24 (ABCD) 24 A B C D

Descrigtion of Factors

HpAvail = t; Degree to which manpower
.loading levels are
constrained by personnel
availability or budget
limitations (100% - no
manloading constraints) 100 100 100 100 100

PkIload = Peak Software Development
Team Manloading over the
course of the project () 33 15 2 6 11

RBLY - Required Software
Reliability 1.15 1.15 1.15 1.15 .88

.75 - vlow

.88 - low
1.00 - nom
1.15 - high
1.40 - vhigh

CPLX - Software Product "
Complexity 1.15 1.3 1.15 1.15 .85

.70 - vlow

.85 - low
1.0 - nom
1.15 - high
1.30 - vhigh
1.65 - ehigh

SpecQ - Quality of Specification * 0 1 0 1
0 - very precise
1 - precise
2 - imprecise

DSLOC - Deliverable Lines
of Source Code
Excluding
Documentation 185600 87700 18300 29500 50100

DocLOC a Lines of Source Code
Documentation 180400 108200 20000 16000 36200

115

Mitre Proiect Data (page 12 of 18)

Project #24 (A,B,C,D) 24 A B C D

Descrigtion of Factors

DATA = Data Base Size .94 .94 .94 .94 .94
.94 low (D/P<10)
1.00 = nom (10<D/P<100)
1.08 = high (100<D/P<1000)
1.16 = vhigh (D/P>=1000)

D/P = Data Base Size in Bytes or Characters
LOC

Size Breakdown by Operation as % of LOC

DSR = Data Storage and Retrieval (M) * 0 5 10 4

OLC = On-Line Communications (M) * 10 5 0 11

RTC&C = Real-time Command and
Control (M) * 0 0 0 0

IntOp = Interactive Operations * 35 0 0 12

MathOp = Mathematical Operations (%) * 55 90 10 31

String = String Manipualtion (%) * 0 0 80 42

OS = Operating Systems (M) * 0 0 0 0

Operational Response Reguirement as % of LOC

RT = Real-Time (%) * 55 41 0 16

OL = On-Line (M) * 35 0 0 0

TC = Time-Constrained (M) * 10 0 0 84

NTC = Non-Time Critical (M) * 0 59 100 0

Source Statement TYpe Mix as % of LOC

Logic = Logical (%) * 20 20 60 32

Commnd = Command (%) * 30 10 10 33

Math = Mathmatical (%) * 40 60 10 31

DatMan = Data Manipualtion (M) * 0 0 10 0

116

Mitre Prolect Data (page 13 of 18)

Project #24 (A,B,C,D) 24 A B C D

Descriltion of Factors

DatDcl = Data Declaration (M) * 10 10 10 0

Display Special Display
Requirements * 3 1 not given
0 = none
1 = simple input/output
2 = user friendly
3 = interactive
4 = complex requirements/

severe impact

Lanouages Used as % of Total Eauivalent DSI

HOL = Higher Order Language (%) 77.4 86.4 95.6 1.0 100

ASSMBLY = Assembly Language (%)
= (100-HOL) 22.6 13.6 4.4 99.0 0.0

HOLang = Higher Order Language
Used (Name) Jovial

Reusable Code From Simliar Prolects

ADPLOC = # of DSLOC adapted
from existing
software 155400 72800 15900 24100 42600

Design = % Design Modification
required (of the
original-design) 3.1 0.0 30.0 0.0 0.0

Code = % Code Modification
required 2.9 0.0 15.0 0.0 5.0

Integr = % Code Integration
required 29.9 50.0 50.0 0.0 5.0

117

Mitre Prolect Data (page 14 of 18)

Project #24 (A,B,C,D) 24 A B C

Descrintion of Factors

CPI = Conversion Planning Increment not given
0 = None
1 = Simple conversion schedule,

acceptance plan
2 = Detailed conversion schedule,

test and acceptance plans
3 = Add basic analysis of existing

inventory of code and data
4 = Add detailed inventory, basic

documentation of existing
system

5 = Add detailed inventory, detailed
documentation of existing system

DOCUM = Documentation Total
(# of pages) not given

SFtot = Software Failure History
(Total of design and coding
errors documented as Software
Trouble Reports, Software
Problem Reports
(Total # of STRs, SPRs, etc) not given

IncrDev= Incremental Development
(Can, or should an
incremental costing
approach be used?)
(Y/N?) yes yes yes yes yes

D&Tcomp = Development and Target
Computers (Same or
Different?) same same same same same

CSCData = CSC Level Data
(Is there any?) yes yes yes yes

(Y/N?)

SCED = Schedule Constraint 1 1 1 1
1.23 = vlow
1.08 = low
1.00 = nom
1.04 = high
1.10 = vhigh

118

Mitre Prolect Data (page 15 of 18)

Project #24 (AB,C,D) 24 A B C D

Descriotion of Factors

EFTpd = Effort expended
during the
preliminary design
phase
(t of staff-months) 46.22 13.61 2.74 19.8 10.07

EFTdd Effort expended during
the detailed design
phase
(# of staff-months) 130.76 60.3 9.66 16.52 44.28

EFTcut = Effort expended
during the coding
and unit testing
phase (#
staff-months) 95.66 48.85 10.13 13.69 22.99

EFTit Effort expended during
the integration and
testing phase (t of
staff-months) 62.54 38.26 5.45 2.18 16.65

EFTtot = Total Effort
Expended in
software
Development (#
of staff-months) 335.18 161.02 27.98 52.19 93.99

Eunits = Units in which
effort was
provided

1 = staff-months
2 = staff-hours 2 2 2 2 2

Convfac =.Conversion factor
from staff-months
to staff-hours (M 152 152 152 152 152

EPTcal = Normalized total
effort
(# staff-months) 335.2 161.0 28.0 52.2 94.0

119

Mitre Project Data (page 16 of 18)

Project 124 (A,BC,D) 24 A B C D

Descrigtion of Factors

Months = Period of time over
which EFTcal value
was determined
(# of months) 26 26 24 23 26

Delta T = Difference between the
time over which effort
was expended and the
duration of the software
development. Positive
values indicate that
EFTcal Includes effort
outside the COCOMO-
defined software
development period.
Negative values indicate
that the effort data
is incomplete EDSI
= Equivalent number
of Deliverable Source
Instructions for
adapted LOC. (M) 0.0 0.0 -2.0 -2.0 0.0

TotEDSI = Total Equivalent
number of
Deliverable Source
Instructions (M) 17207 10920 5009 0 1278

Mode = COCOMO mode of software
development, as defined
in table below 3 E SD SD SD

0 = Organic
SD = Semi-Detached
E = Embedded
FW = Firmware

Concurnt = CSCIs which were
concurrently
developed are
assigned the same
number () * 1 2 3 4

120

Mitre Prolect Data (page 17 of 18)

Project 124 (A,B,C,D) 24 A B C

Description of Factors

COMMENTS = Unusual aspects of programs,
development method, or other
possible cost-impact information.

24 Missing CDAs taken from #19; Effort doesn't incl B-5
generation.
24A Orig. est. 94.4 KDSI; Adapted code from #23
24B Orig. est. 28.6 KDSI; Adapted code from #23
24C Orig. est. 47.3 KDSI; Adapted code from #23
24D Orig. est. 66.4 KDSI; Adapted code from #23

Executive = Customer of the contractor: ESD/OC

PQT-1 = Date of first
Preliminary
Qualification
Test (mm.yy) 11.83 10.83 12.83 12.83

Incr-1 = Total DSI accepted
at PQT-1
Project #24

PQT-2 = Date of second Preliminary not given
Qualification Test

Incr-2 = Total DSI accepted at PQT-2 not given

PQT-3 = Date of third Preliminary not given
Qualification Test

Incr-3 = Total DSI accepted at PQT-3
(Does not include Incr-1
or Incr-2) not given

PQT-4 = Date of fourth Preliminary
Qualification Test, If any not given

Incr-4 = Total DSI accepted at PQT-4 not given
(does not include Incr-1,
Incr-2, or Incr-3)

121

Mitre Proiect Data (page 18 of 18)

Project #24 (A,B,C,D) 24 A B C D

Description of Factors

Dffclty = Putnam's Difficulty Factor;
This is also the initial
slope of the Rayleigh
curve that is fit to the
manloading curve.
(4*(total effort)/
Development Time)2 1.02 1.54 0.39 * 1.47

Product = Productivity = Total
(new + equivalent
modified) LOC/
Calibrated effort
(from SDR through
FQT)
(TEDSI/EFTcal) 141.4 160.4 264.8 103.5 93.4

AAF = Adaptation Adjustment
Factor = .4 x Design +
.3 x Code + .3 x Integr 11.1 15.0 31.5 0.0 3.0

CAF = Conversion Adjustment
Factor = AAF + CPI 11.1 15.0 31.5 0.0 3.0

NewDSI = New lines of code
developed = Delivered
LOC - modified LOC 30200 14900 2400 5400 7500

Qeft = Qualify factor for effort
data Code # 5 5 5 5 5

Osize= Quality factor for
TEDSI data Code #

3 3 3 3 3

Date = Midpoint year of the
development = (date
of SDR + date of
FQT)/2 1983 1983 1983 1983 1983

EAF = Effort Adjustment
factor = Product
of all COCOMO DEMs
(#) 2.83 5.09 3.23 2.09 1.18

122

APPENDIX D:

Intermediate COCOMO Cost Driver
Ratings and Effort Multipliers for Project #24

Cot REffort Multiplier

RELY H 1.15

DATA L 0.94

CPLX H 1.15

TIME VH 1.30

STOR EH 1.56

VIRT VL 0.87

TURN NOM 1.00

ACAP NOM 1.00

AEXP L 1.13

PCAP NOM 1.00

VEXP VL 1.21

LEXP VL 1.14

MQDP H 0.91

TOOL H 0.91

SCED NOM 1.00

EAF = 2.83

123

APPENDIX E:

PRICE-S (MODE 2) Input Values
Project 24 A,B,C,D

ITEM DESCRIPTORS
Platform 1.8 Mgmt Complexity 1.00 External Integ 0.50

COMPONENT 1 titled: PROJECT 24 A

DESCRIPTORS
Internal Integration 0.50 External Integration 0.50
Utilization Fraction 0.75

SCHEDULE
Software Spec Review 982 Preliminary Design Review 0
Critical Design Review 0 Test Readiness Review 0
Functional Config Audit 0

LANGUAGE 1 DESCRIPTORS
Language JOVIAL Source Code 75773
Complexity 1 1.00 Complexity 2 1.00

Non-executable SLOC 0.10 Productivity Factor 4.00

Application Categories Mix New Design New Code
User Defined (APPL=0.00) 0.00 0.00 0.00
Data S/R 0.00 0.00 0.00
Online Comm 0.10 0.17 0.17
Realtime C&C 0.00 0.00 0.00
Interactive 0.35 0.17 0.17
Mathematical 0.55 0.17 0.17
String Manip 0.00 0.00 0.00
Opr Systems 0.00 0.00 0.00

LANGUAGE 2 DESCRIPTORS
Language ASSEMBLY Source Code 11927
Complexity 1 1.00 Complexity 2 1.00

Non-executable SLOC 0.10
Productivity Factor 4.00

Application Categories Mix New Design New Code
User Defined (APPL=0.00) 0.00 0.00 0.00
Data SIR 0.00 0.00 0.00
Online Comm 0.10 0.17 0.17
Realtime C&C 0.00 0.00 0.00
Interactive 0.35 0.17 0.17
Mathematical 0.55 0.17 0.17
String Manip 0.00 0.00 0.00
Opr Systems 0.00 0.00 0.00

124

PRICE-S (MODE 2) Input Values

Project 24 A,B,C,D

COMPONENT 2 titled: PROJECT 24 B

DESCRIPTORS
Internal Integration 0.50 External Integration 0.50
Utilization Fraction 0.75

SCHEDULE
Software Spec Review 982 Preliminary Design Review 0
Critical Design Review 0 Test Readiness Review 0
Functional Config Audit 0

LANGUAGE 1 DESCRIPTORS
Language JOVIAL Source Code 17495
Complexity 1 1.00 Complexity 2 1.00

Non-executable SLOC 0.10
Productivity Factor 4.00

Application Categories Mix New Design New Code
User Defined (APPL=0.00) 0.00 0.00 0.00
Data S/R 0.05 0.26 0.26
Online Comm 0.05 0.26 0.26
Realtime C&C 0.00 0.00 0.00
Interactive 0.00 0.00 0.00
Mathematical 0.90 0.26 0.26
String Manip 0.00 0.00 0.00
Opr Systems 0.00 0.00 0.00

LANGUAGE 2 DESCRIPTORS
Language ASSEMBLY Source Code 805
Complexity 1 1.00 Complexity 2 1.00

Non-executable SLOC 0.10
Productivity Factor 4.00

Application Categories Mix New Design New Code
User Defined (APPL=0.00) 0.00 0.00 0.00
Data S/R 0.05 0.26 0.26
Online Comm 0.05 0.26 0.26
Realtime C&C 0.00 0.00 0.00
Interactive 0.00 0.00 0.00
Mathematical 0.90 0.26 0.26
String Manip 0.00 0.00 0.00
Opr Systems 0.00 0.00 0.00

125

PRICE-S (MODE 2) Input Values

Project 24 A,B,C,D

COMPONENT 3 titled: PROJECT 24 C

DESCRIPTORS
Internal Integration 0.50 External Integration 0.50
Utilization Fraction 0.75

SCHEDULE
Software Spec Review 982 Preliminary Design Review 0
Critical Design Review 0 Test Readiness Review 0
Functional Config Audit 0

LANGUAGE 1 DESCRIPTORS
Language ASSEMBLY Source Code 29500
Complexity 1 1.00 Complexity 2 1.00

Non-executable SLOC 0.10
Productivity Factor 4.00

Application Categories Mix New Design New Code
User Defined (APPL=0.00) 0.00 0.00 0.00
Data S/R 0.10 0.18 0.18
Online Comm 0.00 0.00 0.00
Realtime C&C 0.00 0.00 0.00
Interactive 0.00 0.00 0.00
Mathematical 0.10 0.18 0.18
String Manip 0.80 0.18 0.18
Opr Systems 0.00 0.00 0.00

126

PRICE-S (MODE 2) Input Values

Project 24 A,B,C,D

COMPONENT 4 titled: PROJECT 24 D

DESCRIPTORS
Internal Integration 0.50 External Integration 0.50
Utilization Fraction 0.50

SCHEDULE
Software Spec Review 982 Preliminary Design Review 0
Critical Design Review 0 Test Readiness Review 0
Functional Config Audit 0

LANGUAGE 1 DESCRIPTORS
Language JOVIAL Source Code 50100
Complexity 1 1.00 Complexity 2 1.00

Non-executable SLOC 0.00
Productivity Factor 4.00

Application Categories Mix New Design New Code
User Defined (APPL=0.00) 0.00 0.00 0.00
Data S/R 0.04 0.19 0.19
Online Comm 0.11 0.19 0.19
Realtime C&C 0.00 0.00 0.00
Interactive 0.12 0.19 0.19
Mathematical 0.31 0.19 0.19
String Manip 0.42 0.19 0.19
Opr Systems 0.00 0.00 0.00

127

APP NDIX F:

PRICK-B (MODE 2) Estimation Summary

Project 24 AB,C,D

COSTS IN PERSON MONTHS

Design Prog Data S/PH Q/A Connfiq Total

Sys Concept 0. 0. 0. 0. 0. 0. 0.
Sys/SW Reqt 0. 0. 0. 0. 0. 0. 0.
SW Requirement 134. 0. 28. 49. 26. 25. 262.
Prelim Design 97. 16. 20. 33. 18. 18. 203.
Detail Design 130. 60. 28. 43. 25. 27. 313.
Code/Test 93. 67. 22. 33. 21. 23. 259.
CSCI Test 145. 146. 52. 68. 48. 55. 514.
System Test 0. 0. 0. 0. 0. 0. 0.
Oper T a 0. 0. 0. 0. 0. 0. 0.

Sub-Total 599. 289. 150. 226. 138. 148. 1550.

Purchased Cost - - - - - - 0.

TOTAL - 1550.

SCHEDULE IIFORMATION'

Concept Start 8EP 81 TUE OCT 83 (4.1)
SS NOV 81 (3.5) FCA AUG64 (10.0)
SDR FED 82 (2.3) PCA NOV 84 3.1)
583 531 82 (7.2) FOR FEB 85 (3.1)
D JAN 83 (4.0) OT OCT 85 ,7.7)

CDR JUN 83 (5.1)

MOTE: The time frame considered for comparison Is highlighted
In bold print.-

SUPPLEMENTAL INFORMATION

Source Lines of Code 185600
Source Lines of Code/Person Month 144.0

128

APPENDIX G:

SOFTCOST-R INPUT VALUES

Project #24

SIZING FACTORS

Lines of executable source code: MAX AVG MIN
New: 34.7 30.2 25.6
In existing modules requiring

modification: 5.2 4.5 3.8
Deleted from existing modules: 0 0 0
Added to existing modules: 0 0 0
Changed In other ways in existing

modules: 0 0 0
Deleted as entire modules 0 0 0
Retested but remained unchanged 0 0 0

Percentage of source code developed that will be

delivered = High

MANAGEMENT FACTORS

Phase of the life cycle software work will begin: System
Requirements Phase

Percentage of total software requirements
Well established, stable, and will not change before
delivery: 85
Will change slightly before delivery (under baseline
control): 15
Will change more drastically before delivery (under
baseline control): 0

Complexity of software requirements: High
Expected user involvement in requirements definition: Low
Customer experience In the application area: Low
Customer/implementor organizational interface

complexity: Medium
Level of interfaces with other projects or

organizations: High
Efficiency of implementing organization: Medium

129

SOFTCOST-R INPUT VALUES

Project #24

STAFFING FACTORS

Overall personnel qualifications of the team: Low
Percentage of programmers doing design and working

development: High
Team's experience with projects of similar size and

complexity: low
Average staff experience (in years): 3
Staff experience with:

the operational computer(s): Low
the programming languages: Low
top-down methodology: Medium
team concepts: Medium
structured programming: Low

Type of technical reviews held: High

COMPLEXITY FACTORS

Number of different I/O Items generated per 1000 lines: Low
Overall complexity of the data base architecture: Low
Complexity of the logical design: Medium
Percentage of the:

program will be in assembly language: 22
program will be storage optimized: 90
program will be timing optimized: 78
total task will be easy: 84
total task will be hard: 16

ENVIRONMENTAL FACTORS

Classified security environment for computer: Y
Amount of hardware under concurrent development: Medium
Percent of work done at primary development site: High
Development computer accessibility: High
Development computer availability: High
Software development tools/environment reliability: High
Maturity of system and support software: Medium
Overall adverse constraints on program design: Medium
Percent of program which is real-time and multi-tasking: Low
Software will be adapted to multiple environments: N
Adaptation required to change from development to

operational environment: Medium

130

APPENDIX H:

SOFTCOST-R RESOURCES ESTIMATE

PROJECT #24

Calculated:

Effort (person-months): 126.0
Duration (months): 21.1
Average Staff (persons): 6.0
Productivity (SLEC/person-month): 249.2
Adjusted source lines of executable code (KSLEC): 31.4
Confidence: 10.9%

131

APPENDIX I:

SPOR/20 INPUT VALUES

Project *24

BSTIMATE AND FINANCIAL INPUTS

Estimate Type: New Program
Estimate scope: Complete stand-alone program
stimate Goals: Find the normal average of staff size,
schedules, and quality

maximum Staff Size: Normal
Minimum Staff Size: Normal
Output Metric: Work Months (Default)
Staff Availability: lO0
Exempt Technical Staff: LOOt
Average Work Week: 40 hours
Average Work Year: 220 days
Average Monthly Salary: 5000 (default)
Other Project Costs: 0

PROJECT CLASS: External program developed under Military
Spec ificat ions

PROJECT TYPZ: Embedded or Realtime program

3NVIRONMENTAL INPUTS

Project Novelty: Functional repeat, but some new features
Office Facilities: Doubled offices and good facilities
Program Requirements: Fairly clear user requirements
Program Design: New designs and partial automated graphics/

text design support
User Documentation: Programmers or users vith fully
automated graphics/text support

Response time: One to five second response time in the
norm

Staff Experience: Majority of new hires or novices, with
fev experts

Source Code Reusability: Extensive use of reusable code
(>75t)

132

SPQR/20 INPUT VALUES

Project #24

REUSABLE CODE LANGUAGE

Source Language: Mixed languages

Language Level: 3

REUSABLE CODE SIZE (KLOC): 155.4

REUSABLE FUNCTION POINTS: 1,456

LINES PER FUNCTION POINT: 106.73

NEW PROJECT COMPLEXITY

Logical Complexity: Algorithms and calculations of average
complexity

Code Complexity: Fair structure, but some complex modules
and paths

Data Complexity: Simple data with few variables and low
complexity

NEW CODE SOURCE LANGUAGE

Source Language: Mixed languages
Language Level: 3

NEW CODE SIZE (KLOC): 30.2

133

APPENDIX J:

SPQR/20 SUMMARY ESTIMATE

PROJECT #24
MODE 1: Normal Average SECURITY: NONE

START DATE: SEPTEMBER 1982 END DATE: AUGUST 1984

PROJECT DEVELOPMENT ESTIMATE

ACTIVITY SCHEDULE EFFORT
(MONTHS) (MONTHS)

Planning 1.33 1.33
Requirements 2.08 5.61
Design 8.70 26.83
Coding 10.20 33.76
Integration/Test 8.22 28.18
Documentation 11.05 22.44
Management 23.17 20.40

Development 30.54 138.55
Overlapped 23.17
Unpaid Overtime 0.00

134

APPENDIX K:

System-3 Input Values

Project #24

Minimum Nominal Maximum
DEVELOPER TECHNOLOGY
APPLication Complexity 2.0 2.0 2.0
Analyst CAPability 3.5 5.5 7.5
Application EXPerience 0.3 0.3 1.0
MODern Practices, use of 7.5 7.5 7.5
Programmer CAPability 3.5 5.5 7.5
TOOL support, automated 7.5 7.5 7.5
TURNarounid, logon-hardcopy 2.0 2.0 2.0

ENVIRONMENTAL -.COMPUTER
DISP req'mt, special 0.0 3.2 6.8
MEMory Constraint 4.0 4.0 4.0
TIMe Conrtraint 0.0 0.0 0.0
Real TIMe 2.5 5.0 5.0

ENVIRONMENTAL - PRODUCT
SPECification Level 4.0 6.0 6.0
QUALity Assurance Level 4.0 6.0 6.0
TEST Level 4.0 6.0 6.0
Requirements CHanGe vol 1.3 1.3 4.0
ReHOSTing develop->target 0.0 0.0 0.0
LANGuage type rating 1.0 1.0 1.0
Language EXPerience 0.5 1.5 2.0
SYSTem complexity-virtual 2.0 2.0 2.0
System EXPerience-virtual 0.5 1.0 1.0
Virtual Mach. VoLatility 0.0 2.5 2.5

ENVIRONMENTAL - SUPPORT
MULTiple site development 0.0 0.0 0.0
Resource DEDication 7.0 10.0 10.0
Resource/support LOCation 0.0 0.0 0.0

SIZE & COMPLEXITY SUMMARY
New Lines of Code 25670 30200 34730
Existing Lines of Code 132090 155400 178710
Lines to be Deleted 0 0 0
Lines to be Modified 3830 4507 5183
Complexity 11.0 11.0 11.0

DEVELOPMENT CONSTRAINTS
Staffing Rate (Persons/Yr) 0.0 0.0 0.0
Maximum Staff (Persons) 0.0
Maximum Effort (Person Mos) 0.0

135

System-3 Input Values

Project 124

Minimum Nominal Maximum
REUSE - REBUILD IMPACT

% Design Effort Needed 16.0
% Implement Eff. Needed 16.0
% Testing Effor- Needed 16.0

FINANCIAL FACTORS
Average Staff Pay Rate 11000.0
Target Schedule 0.0
% Requirements Effort 8.0
Req's Eff. Complete @ C/A 0.0
Req's Schedule Constraint 0.0
% Integration Effort 29.0
Avg. Annual Inflation 0.0

136

APPENDIX L:

System-3 Summary Report

Project #24

(Minimum Time) Estimate

FULL SCALE DEVELOPMENT
Development Time 20.74 Months
Development Effort 272.69 Person Months
Project Staff, Peak 19.93 Persons
Actual Staffing Rate 19.01 Persons/Year
Productivity 127.28

Lines/Staff/Month

REQUIREMENTS AND INTEGRATION
Requirements Time 8.82 Months
Requirements Effort 53.32 Person Months
Total Requirements Cost 584..65 K-Dollars
Integration Time 3.95 Months
Integration Effort 79.08 Person Months

Complexity 11.00
Basic Technology Rating 5730.08
Effective Technology Rating 2279.33

Effective Task Size 29696
Total Task Size 185600

137

APPENDIX M:

COCOMO Software Development Effort Multipliers (5:118)

Ratings
Very Low Nominal High Very Extra

Low High High

Product Attributes
RELY .75 .88 1.00 1.15 1.40

DATA .94 1.00 1.08 1.16

CPLX .70 .85 1.00 1.15 1.30 1.65

Computer Attributes
TIME 1.00 1.11 1.30 1.66

STOR 1.00 1.06 1.21 1.56

VIRT .87 1.00 1.15 1.30

TURN .87 1.00 1.07 1.15

Personnel Attributes

ACAP 1.46 1.19 1.00 .86 .71

AEXP 1.29 1.13 1.00 .91 .82

PCAP 1.42 1.17 1.00 .86 .70

VEXP 1.21 1.10 1.00 .90

LEXP 1.14 1.07 1.00 .95

Project Attributes
MODP 1.24 1.10 1.00 .91 .82

TOOL 1.24 1.10 1.00 .91 .83

SCED 1.23 1.08 1.00 1.04 1.10

138

Biblioarabhv

1. Abdel-Hamid, T.K. and B.S. Kadnick. "An Inegrative
Approach to Modeling the Software Management Process: A
Basis for Identifying Problem and Evaluating Tools and
Techniques," Proceedings of the IEE Computer Society
WVrkshon on Software Enaineerina Technoloav Transfer.
15-23. New York: ISBN Computer Society Press, 1983.

2. Aron, J.D. "Estimating Resources for Large Programing
Systems," Proceedings of the Software Ingineering
Techniaues Conference Snonsored by the NATO Science
Commitee. 262-266. New York: Mason Chaster, 1969.

3. Boddie, John. .oruMeh Mode. Buildina Effective System
on a Tiaht Schedule. Englewood Cliffs NJ: Prentice-
Hall, Inc., 1987.

4. Boehm, Barry W. "Software Engineering Economics," 133
Transactions on Software Enaineerina. SZ-10: 4-21
(January 1984).

5. Boehm, Barry V. software Engineering Economics New
Jersey: Prentice-Hall, Inc. 1981.

6. Boehm, Barry-W. "Software Life Cycle Factors," Handbook
of Software Engineering. Edited by C.R. Vick, Ph.D. and
C.V. Ramamoorthy, Ph.D. New York: Van Nostrand
Reinhold Company, 1984.

7. Brooks, Frederick P., Jr. The Mythical Man-Month!
Essays on Software anaineerina. Reading MA: Addison-
Wesley, 1975.

8. Bruce, Phillip and Sam M. Pederson. The 9oftware
Davelon mnt Prolect! Plannina and Management. New
York: John Wiley and Sons, 1982.

9. Bruggere, Thomas H. "Software Engineering: Management,
Personnel and Methodology," Proceedinas. Fourth
Internatlonal Conference on Software Enaineering. 361-
368. New York: IEEE Press, 1979.

10. Cheadle, William G, Manager, Technology Implementation
and Support Martin Marietta Astronautics Group. Personal
Interview. Martin Marietta Corporation, Denver CO, 22
February 1988.

139

11. Cheadle, William a. "DOD-STD-2167 impacts on Software
Development," XSEA Journalo Paramtrics: 4, December
1966.

12. Commonwealth Books, Inc. New Webater's Vest Packet
Dictin&ry., Framingham MA: Dennision Manufacturing
Company, 1976.

13. Computer Economics, Inc.# IU Presants Rvstem-3 Marina
del Ray CA: CE!, Inc. 1987.

14. Cooper, Jack. "Software Development Management
Planning," 1333 Transactions an Software Rnginearing,
fIL.Jhf: 22-26 (January 1984).

15. Daly, Edmund B. "Management of Software Development,"*
133Transactions on goftyare angineering 33-,.: 289-

299 (May 1977).

16. Department of Defense. * Dfense Systen Software
Dea2Wo.~t. Military Standard 2167. Washington: DOD,
27 October 1987.

17. Donelson, William S. "Project Planning and Control."
D to.L : 73-80 (June 1976).

18. Doty Associates, Inc. software Ct tition Study..
Volume X: Study Results. Final Rep=r. echnical
Report No. 151. Nev York: Rom Air Development Center,
February 1977.

19. Driscoll, Alan J., Lt.Col. "Software Visibility and the
Program Manager," Defense avy.tern angement 48-56.
(Spring 1977).

20. Emory, C. William. Business Research Methods.
Homewood IL: Irvin, 1985.

21. Ferens, Daniel V. An Introduction to Software
Para ec ost ZtintIng, Wright-Patterson AFB ON:

Aix Force Institute of Technology, 1987.

22. Funch, Paul 0. Software Cost DaaBscontract
F19628-66-C-0001. Bedford MA: The MITRE Corporation,
October 1967.

23. Haves, Norman R. "Managing Software Development
Projects for Maximum Productivity," 133T a ans On
Software 3nineering, 9R-1 0: 27-35 (January 1984).

140

24. Hurst, 1.S. 'SPHMS-Informatlon Structures In Software
Management,' Software Engineerino Journal 1: 50-57
(January 1986).

25. Jensen, Randall V. "An Improved Macrolevel Software
Development Resource Estimation Model, Fiurtensth
Asllomar Conference on Circuits. System and Computers,
Institute of Electrical and Electronic Engineers, New
York: 1981

26. Keider, Stephen P. *Why Projects Fail," RaoLamJti.:
53-55 (December 1974).

27. Norden, Peter. "Useful Tools for Project Management,"
Management of Production, edited by H.K. Star.
Baltimore: Penguin Books, Inc., 1970.

28. Ott, Jams 3. Handout distributed at the Presentation
of PRICE Software Model to ASD Engineers. Aeronautical
Systems Division, Air Force Systems Comeand, Vright-
Patterson AFB OH, 1988.

29. Pressman, Roger S. Software Rnaineerinaz A
Practitioner's Approach. New York: McGraw-Hill Book
Company, 1987.

30. Putnam, Lawrence H. and Ray V. Wolverton.
*Introduction," Tutorial - Ouantitative Manaaement:
Software Cost Estimatina edited by Lawrence H. Putnam
and Ray V. Wolverton. New York: I=E Press, 1977.

31. Putnam, Lawrence H. SLIM User's Guide, McLean VA:
Quantitative Software Management, Inc., 1980.

32. Putnam, Lawrence H. *The Software Life Cycle: Evidence
And Foundation," Tutorial - Quantitative Management!
Software Cost ZstLmatina, edited by Lawrence H. Putnam
and Ray V. Volverton. New York: IEE Press, 1977.

33. Putnam, Lawrence H. "The Software Life Cycle:
Practical Application to Estimating Cost, Schedule and
Providing Life Cycle Control," Tutorial - Quantitative
Manaement! Software Cost Zzti-tina. edited by
Lawrence H. Putnam and Ray V. Wolverton. New York:
IEEE Press, 1977.

34. RCA PRICE System, RCA PRICZ- Reference Manual Cherry
Hill NJ: RCA, 1987.

141

35. Reifer, Donald J. "The Software Engineering Checklist,"
eroceedings of the ColMuters In aeromace Conference.
126-128. El Segundo CA: American Institute of
Aeronautics and Astronautics, 1977.

36. Reifer, Donald J. Tutorial: goftware .Kanagement,. Los
Angeles: IEEE Computer Society Press, 1981.

37. Rook, Paul. *Controlling Software Projects," Softare~.
Rngineering Journal! gueial Tsang an Controlling
Software Proiects6 1: 7-16 (January 1986).

38. Scacchi, Walt. "Managing Software Engineering Projects:
A Social Analysis," T33 ransactions on Software
XngnnzrlMn S-10: 49-59 (January 1984).

39. Software Productivity Research, Inc. User Guide:_
APRBLZ.L Cambridge MA: Software Productivity Research,
Inc., 1986.

40. Thayer, Richard and Arthur 3. Pyster. "Guest Editorial:
Software Engineering Management,* Software Engineering
Journal: Snecial Issue on Controllina 8oftware
Projects, L.: 2 (January 1986).

41. The Analytic Sciences Corporation. The AFSC Cost
Etimating Handbook Series. 3Ju. 1 ,"AFSC Cost
Estimating Handbook," Reading MA. 1

42. van Patten King, C., J. Bruscino, P. Kane and D. Reifer.
SaftCnat-R Userls Nannal, Torrance CA:. Reifer
Consultants, Inc., 1987.

43. Vogel, Donna. "Possible Software Cost Topics for AlIT
Theses." Briefing to Graduate Students in Cost
Analysis. Air Force Institute of Technology (AU).
Wright-Patterson AID OH, 19 October 1988.

44. Vosburgh, J., B. Curtis, R. Wolverton,, B. Albert, H.
Malec, S. Hoben, and Y. Liu. "Productivity Factors and
Programing Environments," Proceedina of the 7th
International Conference On Baftware EnaineAring. 143-
152. Nev York: IEE= Computer Society Press, 1984.

45. Wendt, Major H. and M.W. Evans. "Cost/Schedule
Management for Software Development," Proceedings of the
2nd AlEC Standardization Conference. 1053-1069.
Dayton OH: Air Force Systems Co mmand, Aeronautical
System Division, 1982.

142

46. Vingrove, Alan. "The Problem of Managing Software
Projects," software Enaineering Journal= Riecial Issue
on Controlling softrare Proleegt 1: 3-6 (January

r 1986).

47. Wolverton, Ray V. "The Cost of Developing Large-Scale
Software." Tutorial - Quantitative Management: Software
Cost Zstimatina. edited by Lawrence H. Putnam and Ray V.
Volverton. New York: 1389 Press, 1977.

143

VITA

Captain Crystal D. Blalock received the degree of

Bachelor of Science in Business Administration with Honors

from the University of Tennessee at Knoxville in 1983. Her

major concentration was in Operations Management. Upon

completion of Officer Training School in San'Antonio, Texas,

she was commissioned as a Second Lieutenant in the USAF on 28

March 1984. She served as a Budget Analyst at the Oklahoma

-City Air Logistics Center, Tinker AFB, OK and as a Cost

Analyst at the Aeronautical System Division, Wright-Patterson

AFB, OH prior to entering the School of Systems and

Logistics, Graduate Studies in Cost Analysis, Air Force

Institute of Technology, in July 1987.

144

UNCLASSIFIED
SECURITY CLAMSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE O0NoO-O18
. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION IAVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE distribution un limited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCA/LSY/88S- z

Ga. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
School of Systems and (if aliabe)
Logistics AFI T/LSQ

6c. ADDRESS (City. State, and ZIP co) 7b. ADDRESS (CRY. Stat., and ZIP Co*)
Air Force Institute of Technology
Wright-Patterson AFB, OH 45433-6583

Sa. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applkable)

Bc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11.TITE (nclde ecuityClassfication)ANANALYSISOF SCHEDULE DETERMINATION IN SOFTWARE DEVELOPMENT PROGRAMS
AND SOFTWARE DEVELOPMENT ESTIMATION MODELS (UNCLASSIFIED)

12. PERSONAL AUTHOR(S)
Blalock, Crystal D. , B.S., Captain, USAF

13a. TYPE OF REPORT 113b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) IS. PAGE COUNTM.S. Thesis FROM_ _TO I 1988 September i159
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necesary and identify by block number)
FIELD GROUP SUB-GROUP Cost Analysis, Estimates, Costs, Schedule,

03 Computer program, Cost models05 01
19. ABSTRACT (Continue on reverse if necessary and Identif by block number)

Thesis Advisor: Daniel V. Ferens
Professor of Systems Management

Approved for blic release lAW AFR 190-1.

WILLIAM A. * 17 Oct 88
Associate Dean
School of Systems and Logistics
Air Force Institute of Technology (AU)
Wright-Patterson AFS OH 45433

20. DISTRIBUTION /AVAILABIUTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
M UNCLASSIFIED/UNLIMITED 03 SAME AS RPT. Q DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 221. TELEPHONE (nclude Area Code) I22c. OFFICE SYMBOL
Daniel V. Ferens (513) 255-4845 AFIT/LSY

DO Form 1473, JUN 86 PrevoeQinarobsle. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCLASSIFIED

Block 19:

Accurate schedule estimation in software development
programs is important because delays in the schedule of a
software development program can cause delays in the entire
schedule of a weapon system.

In order to more accurately predict the schedule of a
software development program, estimators need to know which
development factors affect schedule. This thesis reports
twelve factors identified as heavily influencing software
development program schedules. These factors were determined
through extensive reviews of literature written by software
development experts and from interviews with DOD Program
Managers/Engineers and commercial experts who have had
experience with software development programs.

Also, there are many commercial software development
estimation models on the market today. Five of these models
were analyzed for their accuracy in predicting software
development programs. The models analyzed were COCOMO,
PRICE-S, SOFTCOST-R, SPQR/20, and SYSTEM-3. Inputs to these
models were also analyzed for their correlation to schedule
prediction.

UNCLASSIFIED

